Properties

Label 2-222024-1.1-c1-0-15
Degree $2$
Conductor $222024$
Sign $-1$
Analytic cond. $1772.87$
Root an. cond. $42.1054$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s − 11-s + 2·13-s + 2·15-s − 6·17-s + 4·23-s − 25-s + 27-s − 33-s + 10·37-s + 2·39-s − 6·41-s + 8·43-s + 2·45-s + 4·47-s − 7·49-s − 6·51-s − 6·53-s − 2·55-s − 12·59-s − 2·61-s + 4·65-s + 4·67-s + 4·69-s + 12·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 0.516·15-s − 1.45·17-s + 0.834·23-s − 1/5·25-s + 0.192·27-s − 0.174·33-s + 1.64·37-s + 0.320·39-s − 0.937·41-s + 1.21·43-s + 0.298·45-s + 0.583·47-s − 49-s − 0.840·51-s − 0.824·53-s − 0.269·55-s − 1.56·59-s − 0.256·61-s + 0.496·65-s + 0.488·67-s + 0.481·69-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 222024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 222024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(222024\)    =    \(2^{3} \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(1772.87\)
Root analytic conductor: \(42.1054\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 222024,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14957254951886, −12.78146787487724, −12.66576274745607, −11.58530671283413, −11.35675595958913, −10.79436907462458, −10.46077440606690, −9.735819604385969, −9.438840088867280, −9.079717287027552, −8.495905835217241, −8.119036786005415, −7.512770560535699, −7.000779500060140, −6.433803035979424, −6.060808783154254, −5.584553183001760, −4.711370842899364, −4.612369186971774, −3.803346469388433, −3.246468800401215, −2.575942275402508, −2.237573026756895, −1.586314405379673, −0.9628398048784023, 0, 0.9628398048784023, 1.586314405379673, 2.237573026756895, 2.575942275402508, 3.246468800401215, 3.803346469388433, 4.612369186971774, 4.711370842899364, 5.584553183001760, 6.060808783154254, 6.433803035979424, 7.000779500060140, 7.512770560535699, 8.119036786005415, 8.495905835217241, 9.079717287027552, 9.438840088867280, 9.735819604385969, 10.46077440606690, 10.79436907462458, 11.35675595958913, 11.58530671283413, 12.66576274745607, 12.78146787487724, 13.14957254951886

Graph of the $Z$-function along the critical line