Invariants
| Base field: | $\F_{79}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 16 x + 79 x^{2}$ | 
| Frobenius angles: | $\pm0.856485067356$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-15}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $4$ | 
| Isomorphism classes: | 4 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $96$ | $6144$ | $493344$ | $38952960$ | $3076986336$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $6144$ | $493344$ | $38952960$ | $3076986336$ | $243088349184$ | $19203900222624$ | $1517108879523840$ | $119851595561061216$ | $9468276083871995904$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+59 x+19$
 - $y^2=x^3+22 x+66$
 - $y^2=x^3+27 x+2$
 - $y^2=x^3+48 x+65$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-15}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.79.aq | $2$ | (not in LMFDB) |