Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 14 x + 97 x^{2}$ |
| Frobenius angles: | $\pm0.248359198326$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $84$ | $9408$ | $914004$ | $88548096$ | $8587474644$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $9408$ | $914004$ | $88548096$ | $8587474644$ | $832972061376$ | $80798272232916$ | $7837433417468928$ | $760231057365636948$ | $73742412688607909568$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+31 x+58$
- $y^2=x^3+82 x+22$
- $y^2=x^3+91 x+67$
- $y^2=x^3+45 x+31$
- $y^2=x^3+1$
- $y^2=x^3+6 x+30$
- $y^2=x^3+74 x+74$
- $y^2=x^3+77 x+94$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.