Properties

Label 2-18176-1.1-c1-0-13
Degree $2$
Conductor $18176$
Sign $-1$
Analytic cond. $145.136$
Root an. cond. $12.0472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 2·11-s + 2·13-s + 6·17-s − 8·19-s + 8·23-s − 5·25-s − 4·29-s − 8·31-s + 8·37-s + 6·41-s + 8·43-s − 8·47-s − 7·49-s − 10·53-s − 2·59-s − 10·61-s + 14·67-s − 71-s + 14·73-s + 9·81-s − 12·83-s + 6·89-s − 2·97-s − 6·99-s + 101-s + 103-s + ⋯
L(s)  = 1  − 9-s + 0.603·11-s + 0.554·13-s + 1.45·17-s − 1.83·19-s + 1.66·23-s − 25-s − 0.742·29-s − 1.43·31-s + 1.31·37-s + 0.937·41-s + 1.21·43-s − 1.16·47-s − 49-s − 1.37·53-s − 0.260·59-s − 1.28·61-s + 1.71·67-s − 0.118·71-s + 1.63·73-s + 81-s − 1.31·83-s + 0.635·89-s − 0.203·97-s − 0.603·99-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18176\)    =    \(2^{8} \cdot 71\)
Sign: $-1$
Analytic conductor: \(145.136\)
Root analytic conductor: \(12.0472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18176,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
71 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.25214986463655, −15.38801736373132, −14.81500317271494, −14.47683770453931, −14.09834840014361, −13.14982416492604, −12.80493050730535, −12.31625660830797, −11.44784496271310, −10.95347136997035, −10.88375382452487, −9.657091492786821, −9.367026833850282, −8.779406238594252, −8.005192620535905, −7.726525840902767, −6.741907189893179, −6.176771525364178, −5.703026470459377, −5.013731013603538, −4.129699153238517, −3.546791816062859, −2.868999190292452, −1.977097414351048, −1.115790467446046, 0, 1.115790467446046, 1.977097414351048, 2.868999190292452, 3.546791816062859, 4.129699153238517, 5.013731013603538, 5.703026470459377, 6.176771525364178, 6.741907189893179, 7.726525840902767, 8.005192620535905, 8.779406238594252, 9.367026833850282, 9.657091492786821, 10.88375382452487, 10.95347136997035, 11.44784496271310, 12.31625660830797, 12.80493050730535, 13.14982416492604, 14.09834840014361, 14.47683770453931, 14.81500317271494, 15.38801736373132, 16.25214986463655

Graph of the $Z$-function along the critical line