# Properties

 Label 1.3.a Base field $\F_{3}$ Dimension $1$ $p$-rank $0$ Ordinary no Supersingular yes Simple yes Geometrically simple yes Primitive yes Principally polarizable yes Contains a Jacobian yes

# Related objects

## Invariants

 Base field: $\F_{3}$ Dimension: $1$ L-polynomial: $1 + 3 x^{2}$ Frobenius angles: $\pm0.5$ Angle rank: $0$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 2

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

## Newton polygon

This isogeny class is supersingular. $p$-rank: $0$ Slopes: $[1/2, 1/2]$

## Point counts

This isogeny class contains the Jacobians of 2 curves (of which all are hyperelliptic), and hence is principally polarizable:

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4$ $16$ $28$ $64$ $244$

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $16$ $28$ $64$ $244$ $784$ $2188$ $6400$ $19684$ $59536$

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
Endomorphism algebra over $\overline{\F}_{3}$
 The base change of $A$ to $\F_{3^{2}}$ is the simple isogeny class 1.9.g and its endomorphism algebra is the quaternion algebra over $$\Q$$ ramified at $3$ and $\infty$.
All geometric endomorphisms are defined over $\F_{3^{2}}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
TwistExtension degreeCommon base change
1.3.ad$3$1.27.a
1.3.d$3$1.27.a
1.3.d$6$1.729.cc