| L(s) = 1 | − 8·7-s + 9-s − 12·17-s − 6·25-s + 8·31-s + 4·41-s + 16·47-s + 34·49-s − 8·63-s − 32·71-s − 12·73-s + 8·79-s + 81-s + 20·89-s − 28·97-s − 24·103-s + 4·113-s + 96·119-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + ⋯ |
| L(s) = 1 | − 3.02·7-s + 1/3·9-s − 2.91·17-s − 6/5·25-s + 1.43·31-s + 0.624·41-s + 2.33·47-s + 34/7·49-s − 1.00·63-s − 3.79·71-s − 1.40·73-s + 0.900·79-s + 1/9·81-s + 2.11·89-s − 2.84·97-s − 2.36·103-s + 0.376·113-s + 8.80·119-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18432 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18432 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44913304188171401892835914004, −10.20586918892848667331432436971, −9.488699237661810053920246470193, −9.133901360741508328144538474134, −8.839886292016704738441339481672, −7.83182394757322498939219938639, −6.91469103626909406223255043804, −6.80946897903754876349072202165, −6.15267013015603292112906972931, −5.77092473843782707280190480124, −4.31158789218116792910899233548, −4.10625798014363516984369255368, −3.00571163091752467289605693825, −2.44821729992400328434125228202, 0,
2.44821729992400328434125228202, 3.00571163091752467289605693825, 4.10625798014363516984369255368, 4.31158789218116792910899233548, 5.77092473843782707280190480124, 6.15267013015603292112906972931, 6.80946897903754876349072202165, 6.91469103626909406223255043804, 7.83182394757322498939219938639, 8.839886292016704738441339481672, 9.133901360741508328144538474134, 9.488699237661810053920246470193, 10.20586918892848667331432436971, 10.44913304188171401892835914004