L(s) = 1 | + 2-s − 3-s − 4-s − 6-s − 3·8-s + 9-s − 4·11-s + 12-s − 16-s + 2·17-s + 18-s − 4·22-s + 3·24-s + 2·25-s − 27-s − 2·29-s − 4·31-s + 5·32-s + 4·33-s + 2·34-s − 36-s + 4·37-s + 2·41-s + 4·44-s + 48-s − 49-s + 2·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.06·8-s + 1/3·9-s − 1.20·11-s + 0.288·12-s − 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.852·22-s + 0.612·24-s + 2/5·25-s − 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.883·32-s + 0.696·33-s + 0.342·34-s − 1/6·36-s + 0.657·37-s + 0.312·41-s + 0.603·44-s + 0.144·48-s − 1/7·49-s + 0.282·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.042386013242057191759281068005, −7.73193875474790559151689143913, −7.24357262770561757986879026216, −6.67085945837001293384792184240, −6.12078675810264991693813681753, −5.79087706991701204105707454300, −5.24980509079856172672111376176, −5.00061400381632893653341455831, −4.50681549772187313325034835961, −3.86065431032475177551296901352, −3.42631802601421961397147315496, −2.76690929875218979376795267491, −2.15915022974662070276954696654, −1.02819367310663180287905065154, 0,
1.02819367310663180287905065154, 2.15915022974662070276954696654, 2.76690929875218979376795267491, 3.42631802601421961397147315496, 3.86065431032475177551296901352, 4.50681549772187313325034835961, 5.00061400381632893653341455831, 5.24980509079856172672111376176, 5.79087706991701204105707454300, 6.12078675810264991693813681753, 6.67085945837001293384792184240, 7.24357262770561757986879026216, 7.73193875474790559151689143913, 8.042386013242057191759281068005