Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x^{2} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.246613469072$, $\pm0.753386530928$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{6}, \sqrt{-23})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $260$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2208$ | $4875264$ | $10779228576$ | $23854393737216$ | $52599132187121568$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $2206$ | $103824$ | $4888510$ | $229345008$ | $10779241822$ | $506623120464$ | $23811267213694$ | $1119130473102768$ | $52599132138413086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 260 curves (of which all are hyperelliptic):
- $y^2=39 x^6+9 x^5+3 x^4+8 x^3+37 x^2+25 x+26$
- $y^2=7 x^6+45 x^5+15 x^4+40 x^3+44 x^2+31 x+36$
- $y^2=40 x^6+46 x^5+40 x^4+9 x^3+3 x^2+34 x+10$
- $y^2=12 x^6+42 x^5+12 x^4+45 x^3+15 x^2+29 x+3$
- $y^2=x^6+34 x^5+39 x^4+34 x^3+32 x^2+44 x+18$
- $y^2=5 x^6+29 x^5+7 x^4+29 x^3+19 x^2+32 x+43$
- $y^2=23 x^6+7 x^5+12 x^4+45 x^3+29 x^2+4 x+34$
- $y^2=6 x^6+2 x^5+37 x^4+3 x^3+17 x^2+42 x+40$
- $y^2=30 x^6+10 x^5+44 x^4+15 x^3+38 x^2+22 x+12$
- $y^2=15 x^6+24 x^5+x^4+41 x^3+4 x^2+6 x+32$
- $y^2=28 x^6+26 x^5+5 x^4+17 x^3+20 x^2+30 x+19$
- $y^2=45 x^6+17 x^5+30 x^4+9 x^3+31 x^2+25 x+10$
- $y^2=37 x^6+38 x^5+9 x^4+45 x^3+14 x^2+31 x+3$
- $y^2=16 x^6+23 x^5+19 x^4+x^3+18 x^2+39 x+10$
- $y^2=45 x^6+30 x^5+x^4+36 x^3+43 x^2+10 x+34$
- $y^2=35 x^6+19 x^5+10 x^4+44 x^3+23 x^2+21 x+40$
- $y^2=34 x^6+x^5+3 x^4+32 x^3+21 x^2+11 x+12$
- $y^2=21 x^6+26 x^5+21 x^4+44 x^3+35 x^2+21 x+3$
- $y^2=11 x^6+36 x^5+11 x^4+32 x^3+34 x^2+11 x+15$
- $y^2=29 x^6+4 x^5+30 x^4+41 x^3+35 x^2+x+36$
- and 240 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-23})\). |
| The base change of $A$ to $\F_{47^{2}}$ is 1.2209.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-138}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.a_c | $4$ | (not in LMFDB) |