Properties

Label 2.29.c_k
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 29 x^{2} )( 1 + 8 x + 29 x^{2} )$
  $1 + 2 x + 10 x^{2} + 58 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.311919362152$, $\pm0.766493812366$
Angle rank:  $2$ (numerical)
Jacobians:  $100$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $912$ $722304$ $597791376$ $502261309440$ $420512062401552$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $858$ $24512$ $710126$ $20501632$ $594793386$ $17249763808$ $500245097566$ $14507159472608$ $420707251161978$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 100 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The isogeny class factors as 1.29.ag $\times$ 1.29.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.ao_ec$2$(not in LMFDB)
2.29.ac_k$2$(not in LMFDB)
2.29.o_ec$2$(not in LMFDB)