Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 41 x^{2} )( 1 + 41 x^{2} )$ |
$1 - 2 x + 82 x^{2} - 82 x^{3} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.450084017046$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $64$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1680$ | $3104640$ | $4766645520$ | $7967748096000$ | $13420898295882000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $1842$ | $69160$ | $2819678$ | $115841000$ | $4750323282$ | $194755059560$ | $7984917819838$ | $327381898665640$ | $13422659542476402$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=14 x^6+21 x^5+35 x^4+22 x^3+6 x^2+21 x+27$
- $y^2=10 x^6+14 x^5+33 x^4+11 x^3+33 x^2+14 x+10$
- $y^2=37 x^6+12 x^5+39 x^4+32 x^3+39 x^2+12 x+37$
- $y^2=25 x^6+40 x^5+28 x^4+5 x^3+28 x^2+40 x+25$
- $y^2=39 x^6+5 x^5+29 x^4+36 x^3+34 x^2+39 x+36$
- $y^2=10 x^6+16 x^5+6 x^4+32 x^3+6 x^2+16 x+10$
- $y^2=39 x^6+27 x^5+18 x^4+5 x^3+36 x^2+26 x+25$
- $y^2=11 x^6+26 x^5+3 x^4+21 x^3+3 x^2+26 x+11$
- $y^2=30 x^6+17 x^5+30 x^4+40 x^3+38 x^2+26 x+34$
- $y^2=37 x^6+32 x^5+32 x^4+15 x^3+32 x^2+32 x+37$
- $y^2=33 x^6+25 x^5+29 x^4+9 x^3+38 x^2+40 x+5$
- $y^2=15 x^6+6 x^5+36 x^4+34 x^3+36 x^2+6 x+15$
- $y^2=20 x^6+23 x^5+8 x^4+31 x^3+31 x^2+18 x+25$
- $y^2=28 x^6+22 x^5+24 x^4+25 x^3+24 x^2+22 x+28$
- $y^2=12 x^6+6 x^5+16 x^4+15 x^3+31 x^2+19 x+7$
- $y^2=16 x^6+29 x^5+9 x^4+37 x^3+9 x^2+29 x+16$
- $y^2=8 x^6+39 x^5+18 x^4+14 x^3+21 x^2+36 x+37$
- $y^2=8 x^6+25 x^5+18 x^4+31 x^3+18 x^2+25 x+8$
- $y^2=40 x^6+5 x^5+38 x^4+x^3+38 x^2+5 x+40$
- $y^2=24 x^6+5 x^5+32 x^4+28 x^3+32 x^2+5 x+24$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.ac $\times$ 1.41.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.da $\times$ 1.1681.de. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.c_de | $2$ | (not in LMFDB) |