Invariants
This isogeny class is simple but not geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$528$ |
$278784$ |
$148039056$ |
$78902562816$ |
$41426508436368$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$24$ |
$526$ |
$12168$ |
$281950$ |
$6436344$ |
$148042222$ |
$3404825448$ |
$78309882814$ |
$1801152661464$ |
$41426505659086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 94 curves (of which all are hyperelliptic):
- $y^2=x^6+18 x^5+2 x^4+15 x^3+21 x^2+19 x+19$
- $y^2=5 x^6+21 x^5+10 x^4+6 x^3+13 x^2+3 x+3$
- $y^2=10 x^6+15 x^5+20 x^4+5 x^3+9 x^2+20 x+3$
- $y^2=x^6+3 x^5+3 x^4+3 x^2+20 x+14$
- $y^2=5 x^6+15 x^5+15 x^4+15 x^2+8 x+1$
- $y^2=10 x^6+11 x^5+12 x^4+13 x^3+3 x^2+6 x+11$
- $y^2=4 x^6+9 x^5+14 x^4+19 x^3+15 x^2+7 x+9$
- $y^2=3 x^6+6 x^5+8 x^4+5 x^3+11 x+1$
- $y^2=15 x^6+7 x^5+17 x^4+2 x^3+9 x+5$
- $y^2=6 x^6+3 x^5+13 x^4+8 x^3+8 x^2+2 x+9$
- $y^2=7 x^6+15 x^5+19 x^4+17 x^3+17 x^2+10 x+22$
- $y^2=6 x^6+3 x^5+x^3+x^2+17 x+12$
- $y^2=7 x^6+15 x^5+5 x^3+5 x^2+16 x+14$
- $y^2=21 x^6+19 x^5+15 x^4+2 x^3+17 x^2+10 x+22$
- $y^2=13 x^6+17 x^5+3 x^4+5 x^2+20 x+6$
- $y^2=19 x^6+16 x^5+15 x^4+2 x^2+8 x+7$
- $y^2=9 x^6+3 x^5+14 x^4+4 x^3+14 x^2+14 x$
- $y^2=x^6+x^3+5$
- $y^2=9 x^6+14 x^5+2 x^4+17 x^3+13 x^2+10 x+1$
- $y^2=21 x^6+3 x^5+x^4+19 x^3+15 x^2+20 x+11$
- and 74 more
- $y^2=2 x^6+20 x^5+10 x^4+14 x^3+19 x^2+21 x+7$
- $y^2=10 x^6+8 x^5+4 x^4+x^3+3 x^2+13 x+12$
- $y^2=12 x^6+18 x^5+21 x^4+17 x^3+2 x^2+6 x+10$
- $y^2=14 x^6+21 x^5+13 x^4+16 x^3+10 x^2+7 x+4$
- $y^2=6 x^6+21 x^5+2 x^4+19 x^2+21 x+1$
- $y^2=2 x^6+11 x^5+19 x^4+7 x^3+20 x^2+2 x+14$
- $y^2=10 x^6+9 x^5+3 x^4+12 x^3+8 x^2+10 x+1$
- $y^2=20 x^6+11 x^5+13 x^4+10 x^3+8 x^2+9 x+1$
- $y^2=7 x^5+14 x^4+20 x^3+4 x^2+10 x+8$
- $y^2=x^6+18 x^5+3 x^4+12 x^3+9 x^2+7 x+6$
- $y^2=5 x^6+21 x^5+15 x^4+14 x^3+22 x^2+12 x+7$
- $y^2=3 x^6+21 x^5+14 x^4+2 x^3+16 x^2+11 x+14$
- $y^2=4 x^6+14 x^5+3 x^4+13 x^3+19 x^2+22 x+20$
- $y^2=20 x^6+x^5+15 x^4+19 x^3+3 x^2+18 x+8$
- $y^2=17 x^6+21 x^5+6 x^4+20 x^3+19 x^2+16 x+19$
- $y^2=16 x^6+13 x^5+7 x^4+8 x^3+3 x^2+11 x+3$
- $y^2=4 x^6+9 x^5+21 x^4+18 x^3+15 x^2+7 x+11$
- $y^2=20 x^6+22 x^5+13 x^4+21 x^3+6 x^2+12 x+9$
- $y^2=19 x^6+2 x^5+3 x^3+14 x^2+22 x+22$
- $y^2=21 x^6+15 x^5+5 x^4+17 x^3+4 x^2+x+13$
- $y^2=13 x^6+6 x^5+2 x^4+16 x^3+20 x^2+5 x+19$
- $y^2=5 x^6+14 x^5+x^4+13 x^3+21 x^2+10 x+6$
- $y^2=3 x^6+2 x^5+8 x^4+9 x^3+x^2+22 x+21$
- $y^2=x^6+x^3+11$
- $y^2=x^6+15 x^5+13 x^4+16 x^3+3 x^2+3 x+15$
- $y^2=5 x^6+6 x^5+19 x^4+11 x^3+15 x^2+15 x+6$
- $y^2=4 x^6+11 x^5+21 x^3+6 x^2+12 x+1$
- $y^2=20 x^6+9 x^5+13 x^3+7 x^2+14 x+5$
- $y^2=x^6+4 x^5+21 x^4+7 x^3+16 x^2+3 x+17$
- $y^2=9 x^6+x^5+5 x^4+9 x^2+6 x+19$
- $y^2=9 x^6+4 x^5+11 x^4+17 x^3+10 x^2+14 x+12$
- $y^2=22 x^6+20 x^5+9 x^4+16 x^3+4 x^2+x+14$
- $y^2=9 x^6+17 x^5+7 x^4+8 x^3+5 x^2+2 x+12$
- $y^2=22 x^6+16 x^5+12 x^4+17 x^3+2 x^2+10 x+14$
- $y^2=3 x^6+13 x^5+2 x^4+19 x^3+22 x^2+14 x+21$
- $y^2=21 x^6+x^4+9 x^3+11 x^2+16 x+5$
- $y^2=13 x^6+5 x^4+22 x^3+9 x^2+11 x+2$
- $y^2=3 x^5+17 x^4+16 x^3+6 x^2+18 x+21$
- $y^2=15 x^5+16 x^4+11 x^3+7 x^2+21 x+13$
- $y^2=17 x^6+7 x^5+16 x^4+18 x^2+12 x+18$
- $y^2=16 x^6+12 x^5+11 x^4+21 x^2+14 x+21$
- $y^2=17 x^5+2 x^4+10 x^3+6 x^2+14 x+19$
- $y^2=16 x^5+10 x^4+4 x^3+7 x^2+x+3$
- $y^2=18 x^6+21 x^5+9 x^4+17 x^3+4 x^2+4 x+12$
- $y^2=21 x^6+13 x^5+22 x^4+16 x^3+20 x^2+20 x+14$
- $y^2=2 x^6+18 x^5+11 x^4+x^3+6 x^2+18 x+15$
- $y^2=10 x^6+21 x^5+9 x^4+5 x^3+7 x^2+21 x+6$
- $y^2=3 x^6+11 x^5+7 x^4+3 x^3+5 x^2+10 x+8$
- $y^2=12 x^6+2 x^5+17 x^4+12 x^3+5 x^2+22 x$
- $y^2=14 x^6+10 x^5+16 x^4+14 x^3+2 x^2+18 x$
- $y^2=19 x^6+18 x^5+13 x^4+4 x^3+7 x^2+21 x+5$
- $y^2=3 x^6+21 x^5+19 x^4+20 x^3+12 x^2+13 x+2$
- $y^2=17 x^6+18 x^5+22 x^4+4 x^3+2 x^2+21 x+21$
- $y^2=16 x^6+21 x^5+18 x^4+20 x^3+10 x^2+13 x+13$
- $y^2=18 x^6+20 x^5+21 x^3+6 x+11$
- $y^2=x^6+6 x^5+11 x^4+3 x^3+2 x^2+4 x+5$
- $y^2=18 x^6+8 x^5+7 x^4+2 x^3+9 x^2+21 x+19$
- $y^2=16 x^6+7 x^5+5 x^4+9 x^3+5 x^2+15 x+6$
- $y^2=11 x^6+12 x^5+2 x^4+22 x^3+2 x^2+6 x+7$
- $y^2=x^6+10 x^5+5 x^4+5 x^3+5 x^2+17 x+7$
- $y^2=3 x^6+2 x^5+5 x^4+18 x^3+19 x^2+2 x+9$
- $y^2=15 x^6+10 x^5+2 x^4+21 x^3+3 x^2+10 x+22$
- $y^2=17 x^5+2 x^4+16 x^3+19 x^2+14 x$
- $y^2=16 x^5+10 x^4+11 x^3+3 x^2+x$
- $y^2=7 x^5+4 x^4+14 x^3+3 x+17$
- $y^2=12 x^5+20 x^4+x^3+15 x+16$
- $y^2=12 x^6+3 x^5+15 x^4+3 x^3+18 x^2+8 x+20$
- $y^2=9 x^6+13 x^5+x^4+5 x^3+7 x^2+18 x+20$
- $y^2=10 x^6+19 x^3+13 x^2+7 x+4$
- $y^2=4 x^6+3 x^3+19 x^2+12 x+20$
- $y^2=17 x^6+12 x^5+9 x^4+13 x^3+7$
- $y^2=16 x^6+14 x^5+22 x^4+19 x^3+12$
- $y^2=9 x^6+6 x^5+8 x^4+15 x^3+2 x^2+18$
- $y^2=22 x^6+7 x^5+17 x^4+6 x^3+10 x^2+21$
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$
Endomorphism algebra over $\overline{\F}_{23}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.