Properties

Label 4-630e2-1.1-c1e2-0-23
Degree $4$
Conductor $396900$
Sign $1$
Analytic cond. $25.3066$
Root an. cond. $2.24289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·7-s + 2·13-s + 4·16-s − 5·25-s − 8·28-s + 9·49-s − 4·52-s − 8·64-s + 20·73-s + 4·79-s + 8·91-s + 14·97-s + 10·100-s + 20·103-s − 2·109-s + 16·112-s + 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 4-s + 1.51·7-s + 0.554·13-s + 16-s − 25-s − 1.51·28-s + 9/7·49-s − 0.554·52-s − 64-s + 2.34·73-s + 0.450·79-s + 0.838·91-s + 1.42·97-s + 100-s + 1.97·103-s − 0.191·109-s + 1.51·112-s + 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(396900\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(25.3066\)
Root analytic conductor: \(2.24289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 396900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.726858293\)
\(L(\frac12)\) \(\approx\) \(1.726858293\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.11.a_al
13$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.13.ac_aj
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.17.a_ar
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.19.a_aba
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.29.a_abd
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.a_bu
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.37.a_aba
41$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.41.a_de
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.43.a_w
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.47.a_abv
53$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.53.a_ec
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.61.a_acw
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.67.a_aes
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \) 2.73.au_jm
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) 2.79.ae_acl
83$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.83.a_gk
89$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.89.a_gw
97$C_2$ \( ( 1 - 19 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.97.ao_dv
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.619495250448774330729646117639, −8.196803657753099266517057107835, −7.86245633143492920051935389143, −7.50898536365263737134391630274, −6.87146855410084676829089737504, −6.11610523874481322543770894662, −5.84483022821066849947467631820, −5.04136752008875194981809299856, −4.99302607561348527581777100665, −4.29963387110938686834498833051, −3.82115912071112996632252598819, −3.32002955324743678403700739856, −2.28542713323892379940645922233, −1.66165150963966803304681422114, −0.78358833816459531328959699236, 0.78358833816459531328959699236, 1.66165150963966803304681422114, 2.28542713323892379940645922233, 3.32002955324743678403700739856, 3.82115912071112996632252598819, 4.29963387110938686834498833051, 4.99302607561348527581777100665, 5.04136752008875194981809299856, 5.84483022821066849947467631820, 6.11610523874481322543770894662, 6.87146855410084676829089737504, 7.50898536365263737134391630274, 7.86245633143492920051935389143, 8.196803657753099266517057107835, 8.619495250448774330729646117639

Graph of the $Z$-function along the critical line