L(s) = 1 | − 2·4-s + 4·7-s + 2·13-s + 4·16-s − 5·25-s − 8·28-s + 9·49-s − 4·52-s − 8·64-s + 20·73-s + 4·79-s + 8·91-s + 14·97-s + 10·100-s + 20·103-s − 2·109-s + 16·112-s + 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 4-s + 1.51·7-s + 0.554·13-s + 16-s − 25-s − 1.51·28-s + 9/7·49-s − 0.554·52-s − 64-s + 2.34·73-s + 0.450·79-s + 0.838·91-s + 1.42·97-s + 100-s + 1.97·103-s − 0.191·109-s + 1.51·112-s + 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.726858293\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.726858293\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.619495250448774330729646117639, −8.196803657753099266517057107835, −7.86245633143492920051935389143, −7.50898536365263737134391630274, −6.87146855410084676829089737504, −6.11610523874481322543770894662, −5.84483022821066849947467631820, −5.04136752008875194981809299856, −4.99302607561348527581777100665, −4.29963387110938686834498833051, −3.82115912071112996632252598819, −3.32002955324743678403700739856, −2.28542713323892379940645922233, −1.66165150963966803304681422114, −0.78358833816459531328959699236,
0.78358833816459531328959699236, 1.66165150963966803304681422114, 2.28542713323892379940645922233, 3.32002955324743678403700739856, 3.82115912071112996632252598819, 4.29963387110938686834498833051, 4.99302607561348527581777100665, 5.04136752008875194981809299856, 5.84483022821066849947467631820, 6.11610523874481322543770894662, 6.87146855410084676829089737504, 7.50898536365263737134391630274, 7.86245633143492920051935389143, 8.196803657753099266517057107835, 8.619495250448774330729646117639