Properties

Label 2.2.105.1-36.2-b
Base field \(\Q(\sqrt{105}) \)
Weight $[2, 2]$
Level norm $36$
Level $[36, 12, 3 w + 15]$
Dimension $1$
CM yes
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{105}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 26\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[36, 12, 3 w + 15]$
Dimension: $1$
CM: yes
Base change: no
Newspace dimension: $34$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}0$
5 $[5, 5, 2 w - 11]$ $\phantom{-}0$
7 $[7, 7, w + 3]$ $\phantom{-}4$
13 $[13, 13, w]$ $\phantom{-}7$
13 $[13, 13, w + 12]$ $-5$
23 $[23, 23, w + 8]$ $\phantom{-}0$
23 $[23, 23, w + 14]$ $\phantom{-}0$
41 $[41, 41, 2 w - 9]$ $\phantom{-}0$
41 $[41, 41, -2 w - 7]$ $\phantom{-}0$
53 $[53, 53, w + 11]$ $\phantom{-}0$
53 $[53, 53, w + 41]$ $\phantom{-}0$
59 $[59, 59, 4 w + 17]$ $\phantom{-}0$
59 $[59, 59, 4 w - 21]$ $\phantom{-}0$
73 $[73, 73, w + 27]$ $\phantom{-}10$
73 $[73, 73, w + 45]$ $\phantom{-}10$
79 $[79, 79, -6 w - 29]$ $\phantom{-}17$
79 $[79, 79, 6 w - 35]$ $-13$
89 $[89, 89, 2 w - 5]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $-1$
$3$ $[3, 3, w + 1]$ $-1$