Base field \(\Q(\sqrt{105}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 26\); narrow class number \(4\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[36, 12, 3 w + 15]$ |
Dimension: | $1$ |
CM: | yes |
Base change: | no |
Newspace dimension: | $34$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w]$ | $\phantom{-}0$ |
2 | $[2, 2, w + 1]$ | $\phantom{-}0$ |
3 | $[3, 3, w + 1]$ | $\phantom{-}0$ |
5 | $[5, 5, 2 w - 11]$ | $\phantom{-}0$ |
7 | $[7, 7, w + 3]$ | $\phantom{-}4$ |
13 | $[13, 13, w]$ | $\phantom{-}7$ |
13 | $[13, 13, w + 12]$ | $-5$ |
23 | $[23, 23, w + 8]$ | $\phantom{-}0$ |
23 | $[23, 23, w + 14]$ | $\phantom{-}0$ |
41 | $[41, 41, 2 w - 9]$ | $\phantom{-}0$ |
41 | $[41, 41, -2 w - 7]$ | $\phantom{-}0$ |
53 | $[53, 53, w + 11]$ | $\phantom{-}0$ |
53 | $[53, 53, w + 41]$ | $\phantom{-}0$ |
59 | $[59, 59, 4 w + 17]$ | $\phantom{-}0$ |
59 | $[59, 59, 4 w - 21]$ | $\phantom{-}0$ |
73 | $[73, 73, w + 27]$ | $\phantom{-}10$ |
73 | $[73, 73, w + 45]$ | $\phantom{-}10$ |
79 | $[79, 79, -6 w - 29]$ | $\phantom{-}17$ |
79 | $[79, 79, 6 w - 35]$ | $-13$ |
89 | $[89, 89, 2 w - 5]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w + 1]$ | $-1$ |
$3$ | $[3, 3, w + 1]$ | $-1$ |