Properties

Label 2.11.a_al
Base field $\F_{11}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 - 11 x^{2} + 121 x^{4}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.833333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-11})\)
Galois group:  $C_2^2$
Jacobians:  $3$
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $111$ $12321$ $1774224$ $217946169$ $25937263551$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $12$ $100$ $1332$ $14884$ $161052$ $1776886$ $19487172$ $214388164$ $2357947692$ $25937102500$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11^{6}}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-11})\).
Endomorphism algebra over $\overline{\F}_{11}$
The base change of $A$ to $\F_{11^{6}}$ is 1.1771561.dyk 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $11$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.a_w$3$(not in LMFDB)
2.11.a_l$4$(not in LMFDB)
2.11.a_aw$12$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.a_w$3$(not in LMFDB)
2.11.a_l$4$(not in LMFDB)
2.11.a_aw$12$(not in LMFDB)
2.11.a_a$24$(not in LMFDB)