L(s) = 1 | + 2-s + 4·3-s + 4-s + 4·6-s + 8-s + 6·9-s − 4·11-s + 4·12-s + 16-s − 2·17-s + 6·18-s − 4·22-s + 4·24-s − 10·25-s − 4·27-s + 32-s − 16·33-s − 2·34-s + 6·36-s − 4·41-s − 4·44-s + 4·48-s + 49-s − 10·50-s − 8·51-s − 4·54-s + 8·59-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 2.30·3-s + 1/2·4-s + 1.63·6-s + 0.353·8-s + 2·9-s − 1.20·11-s + 1.15·12-s + 1/4·16-s − 0.485·17-s + 1.41·18-s − 0.852·22-s + 0.816·24-s − 2·25-s − 0.769·27-s + 0.176·32-s − 2.78·33-s − 0.342·34-s + 36-s − 0.624·41-s − 0.603·44-s + 0.577·48-s + 1/7·49-s − 1.41·50-s − 1.12·51-s − 0.544·54-s + 1.04·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.58921476107187061140994872605, −7.24873510617453755225057715176, −7.15338235857431075096387108974, −6.00726227594673864385067167688, −5.94586048673065741845555135065, −5.53703516941704424444929900143, −4.61890591955424914588423851483, −4.51282315413453787474232180705, −3.78506683414990843986999213899, −3.30389600119444587052090687147, −3.14154639715473478514566829712, −2.36560540929594190713679838208, −2.22835033919080433376049523841, −1.63013473710215361786239756870, 0,
1.63013473710215361786239756870, 2.22835033919080433376049523841, 2.36560540929594190713679838208, 3.14154639715473478514566829712, 3.30389600119444587052090687147, 3.78506683414990843986999213899, 4.51282315413453787474232180705, 4.61890591955424914588423851483, 5.53703516941704424444929900143, 5.94586048673065741845555135065, 6.00726227594673864385067167688, 7.15338235857431075096387108974, 7.24873510617453755225057715176, 7.58921476107187061140994872605