Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 37 x^{2} )( 1 + 8 x + 37 x^{2} )$ |
| $1 + 10 x^{2} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.271573428246$, $\pm0.728426571754$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $224$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1380$ | $1904400$ | $2565686340$ | $3522378240000$ | $4808584459380900$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1390$ | $50654$ | $1879438$ | $69343958$ | $2565646270$ | $94931877134$ | $3512473032478$ | $129961739795078$ | $4808584546343950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 224 curves (of which all are hyperelliptic):
- $y^2=29 x^6+34 x^5+22 x^4+19 x^3+21 x^2+2 x+21$
- $y^2=21 x^6+31 x^5+7 x^4+x^3+5 x^2+4 x+5$
- $y^2=15 x^6+34 x^5+16 x^4+24 x^3+15 x^2+36 x+13$
- $y^2=30 x^6+31 x^5+32 x^4+11 x^3+30 x^2+35 x+26$
- $y^2=26 x^6+27 x^5+27 x^4+26 x^3+27 x^2+17 x+4$
- $y^2=15 x^6+17 x^5+17 x^4+15 x^3+17 x^2+34 x+8$
- $y^2=32 x^5+15 x^4+35 x^3+20 x^2+22 x+24$
- $y^2=13 x^6+5 x^5+29 x^4+20 x^2+22 x+5$
- $y^2=26 x^6+10 x^5+21 x^4+3 x^2+7 x+10$
- $y^2=30 x^6+12 x^5+23 x^4+14 x^3+20 x^2+21 x+9$
- $y^2=31 x^6+19 x^5+16 x^3+30 x^2+16 x+21$
- $y^2=25 x^6+x^5+32 x^3+23 x^2+32 x+5$
- $y^2=16 x^6+26 x^5+3 x^4+35 x^3+24 x^2+36 x+15$
- $y^2=31 x^6+19 x^5+26 x^4+21 x^3+26 x^2+19 x+31$
- $y^2=25 x^6+x^5+15 x^4+5 x^3+15 x^2+x+25$
- $y^2=11 x^6+30 x^5+12 x^4+32 x^3+29 x^2+21 x+23$
- $y^2=22 x^6+23 x^5+24 x^4+27 x^3+21 x^2+5 x+9$
- $y^2=2 x^6+30 x^5+7 x^4+34 x^3+27 x^2+28 x+22$
- $y^2=4 x^6+23 x^5+14 x^4+31 x^3+17 x^2+19 x+7$
- $y^2=13 x^6+19 x^5+6 x^4+16 x^3+2 x^2+13 x+18$
- and 204 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ai $\times$ 1.37.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
Base change
This is a primitive isogeny class.