Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 61 x^{2} )( 1 + 12 x + 61 x^{2} )$ |
| $1 - 22 x^{2} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.221142061624$, $\pm0.778857938376$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $383$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3700$ | $13690000$ | $51520609300$ | $191900067840000$ | $713342910332792500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $3678$ | $226982$ | $13859758$ | $844596302$ | $51520844238$ | $3142742836022$ | $191707271553118$ | $11694146092834142$ | $713342909002702398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 383 curves (of which all are hyperelliptic):
- $y^2=57 x^6+37 x^5+9 x^4+30 x^3+18 x^2+27 x$
- $y^2=53 x^6+13 x^5+18 x^4+60 x^3+36 x^2+54 x$
- $y^2=37 x^6+7 x^5+60 x^4+9 x^3+14 x^2+53 x+52$
- $y^2=13 x^6+14 x^5+59 x^4+18 x^3+28 x^2+45 x+43$
- $y^2=8 x^6+9 x^5+37 x^4+6 x^3+16 x^2+39 x+7$
- $y^2=16 x^6+18 x^5+13 x^4+12 x^3+32 x^2+17 x+14$
- $y^2=41 x^6+7 x^5+26 x^4+36 x^3+51 x^2+45$
- $y^2=21 x^6+14 x^5+52 x^4+11 x^3+41 x^2+29$
- $y^2=2 x^6+3 x^5+47 x^4+22 x^3+30 x^2+20 x+15$
- $y^2=32 x^6+17 x^5+13 x^4+15 x^3+33 x^2+3 x+3$
- $y^2=3 x^6+34 x^5+26 x^4+30 x^3+5 x^2+6 x+6$
- $y^2=46 x^6+41 x^5+39 x^4+4 x^2+12 x+32$
- $y^2=31 x^6+21 x^5+17 x^4+8 x^2+24 x+3$
- $y^2=4 x^6+5 x^5+43 x^4+10 x^3+x^2+42 x+51$
- $y^2=51 x^6+44 x^5+45 x^4+38 x^3+16 x^2+39 x+5$
- $y^2=41 x^6+27 x^5+29 x^4+15 x^3+32 x^2+17 x+10$
- $y^2=42 x^6+14 x^5+34 x^4+21 x^3+13 x^2+30 x+11$
- $y^2=23 x^6+28 x^5+7 x^4+42 x^3+26 x^2+60 x+22$
- $y^2=60 x^6+51 x^5+48 x^4+4 x^3+54 x^2+35 x+23$
- $y^2=49 x^6+5 x^5+20 x^4+41 x^3+16 x^2+24 x+30$
- and 363 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.am $\times$ 1.61.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{61^{2}}$ is 1.3721.aw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.