Properties

Label 238.2.a.e.1.1
Level $238$
Weight $2$
Character 238.1
Self dual yes
Analytic conductor $1.900$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [238,2,Mod(1,238)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("238.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(238, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 238 = 2 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 238.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.90043956811\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 238.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.00000 q^{3} +1.00000 q^{4} +2.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -2.00000 q^{11} +2.00000 q^{12} -2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} +1.00000 q^{18} -2.00000 q^{21} -2.00000 q^{22} +4.00000 q^{23} +2.00000 q^{24} -5.00000 q^{25} -2.00000 q^{26} -4.00000 q^{27} -1.00000 q^{28} +4.00000 q^{29} +1.00000 q^{32} -4.00000 q^{33} -1.00000 q^{34} +1.00000 q^{36} +8.00000 q^{37} -4.00000 q^{39} -2.00000 q^{41} -2.00000 q^{42} -2.00000 q^{44} +4.00000 q^{46} +2.00000 q^{48} +1.00000 q^{49} -5.00000 q^{50} -2.00000 q^{51} -2.00000 q^{52} +2.00000 q^{53} -4.00000 q^{54} -1.00000 q^{56} +4.00000 q^{58} +4.00000 q^{59} -12.0000 q^{61} -1.00000 q^{63} +1.00000 q^{64} -4.00000 q^{66} -8.00000 q^{67} -1.00000 q^{68} +8.00000 q^{69} +12.0000 q^{71} +1.00000 q^{72} -14.0000 q^{73} +8.00000 q^{74} -10.0000 q^{75} +2.00000 q^{77} -4.00000 q^{78} +12.0000 q^{79} -11.0000 q^{81} -2.00000 q^{82} +4.00000 q^{83} -2.00000 q^{84} +8.00000 q^{87} -2.00000 q^{88} -6.00000 q^{89} +2.00000 q^{91} +4.00000 q^{92} +2.00000 q^{96} +6.00000 q^{97} +1.00000 q^{98} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 2.00000 0.816497
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 2.00000 0.577350
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 1.00000 0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) −2.00000 −0.426401
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 2.00000 0.408248
\(25\) −5.00000 −1.00000
\(26\) −2.00000 −0.392232
\(27\) −4.00000 −0.769800
\(28\) −1.00000 −0.188982
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.00000 −0.696311
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) −2.00000 −0.308607
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 2.00000 0.288675
\(49\) 1.00000 0.142857
\(50\) −5.00000 −0.707107
\(51\) −2.00000 −0.280056
\(52\) −2.00000 −0.277350
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 4.00000 0.525226
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −1.00000 −0.121268
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 1.00000 0.117851
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 8.00000 0.929981
\(75\) −10.0000 −1.15470
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) −4.00000 −0.452911
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) −2.00000 −0.220863
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) 8.00000 0.857690
\(88\) −2.00000 −0.213201
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 2.00000 0.204124
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 1.00000 0.101015
\(99\) −2.00000 −0.201008
\(100\) −5.00000 −0.500000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) −2.00000 −0.198030
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) −4.00000 −0.384900
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 16.0000 1.51865
\(112\) −1.00000 −0.0944911
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) −2.00000 −0.184900
\(118\) 4.00000 0.368230
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −12.0000 −1.08643
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) 0 0
\(126\) −1.00000 −0.0890871
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) −4.00000 −0.348155
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 8.00000 0.681005
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 4.00000 0.334497
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 2.00000 0.164957
\(148\) 8.00000 0.657596
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −10.0000 −0.816497
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 12.0000 0.954669
\(159\) 4.00000 0.317221
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) −11.0000 −0.864242
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) −2.00000 −0.154303
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 8.00000 0.606478
\(175\) 5.00000 0.377964
\(176\) −2.00000 −0.150756
\(177\) 8.00000 0.601317
\(178\) −6.00000 −0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 2.00000 0.148250
\(183\) −24.0000 −1.77413
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 2.00000 0.144338
\(193\) −26.0000 −1.87152 −0.935760 0.352636i \(-0.885285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) −2.00000 −0.142134
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) −5.00000 −0.353553
\(201\) −16.0000 −1.12855
\(202\) −10.0000 −0.703598
\(203\) −4.00000 −0.280745
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 4.00000 0.278019
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 2.00000 0.137361
\(213\) 24.0000 1.64445
\(214\) 10.0000 0.683586
\(215\) 0 0
\(216\) −4.00000 −0.272166
\(217\) 0 0
\(218\) 4.00000 0.270914
\(219\) −28.0000 −1.89206
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 16.0000 1.07385
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) −1.00000 −0.0668153
\(225\) −5.00000 −0.333333
\(226\) 18.0000 1.19734
\(227\) 6.00000 0.398234 0.199117 0.979976i \(-0.436193\pi\)
0.199117 + 0.979976i \(0.436193\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 4.00000 0.262613
\(233\) −30.0000 −1.96537 −0.982683 0.185296i \(-0.940675\pi\)
−0.982683 + 0.185296i \(0.940675\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) 24.0000 1.55897
\(238\) 1.00000 0.0648204
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) −7.00000 −0.449977
\(243\) −10.0000 −0.641500
\(244\) −12.0000 −0.768221
\(245\) 0 0
\(246\) −4.00000 −0.255031
\(247\) 0 0
\(248\) 0 0
\(249\) 8.00000 0.506979
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) −1.00000 −0.0629941
\(253\) −8.00000 −0.502956
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 4.00000 0.247594
\(262\) 14.0000 0.864923
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) −8.00000 −0.488678
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 4.00000 0.242091
\(274\) 6.00000 0.362473
\(275\) 10.0000 0.603023
\(276\) 8.00000 0.481543
\(277\) −12.0000 −0.721010 −0.360505 0.932757i \(-0.617396\pi\)
−0.360505 + 0.932757i \(0.617396\pi\)
\(278\) 14.0000 0.839664
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 18.0000 1.06999 0.534994 0.844856i \(-0.320314\pi\)
0.534994 + 0.844856i \(0.320314\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 2.00000 0.118056
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) −14.0000 −0.819288
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 2.00000 0.116642
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 8.00000 0.464207
\(298\) 6.00000 0.347571
\(299\) −8.00000 −0.462652
\(300\) −10.0000 −0.577350
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) −20.0000 −1.14897
\(304\) 0 0
\(305\) 0 0
\(306\) −1.00000 −0.0571662
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 2.00000 0.113961
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −4.00000 −0.226455
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) 12.0000 0.675053
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 4.00000 0.224309
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 20.0000 1.11629
\(322\) −4.00000 −0.222911
\(323\) 0 0
\(324\) −11.0000 −0.611111
\(325\) 10.0000 0.554700
\(326\) −14.0000 −0.775388
\(327\) 8.00000 0.442401
\(328\) −2.00000 −0.110432
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 4.00000 0.219529
\(333\) 8.00000 0.438397
\(334\) 0 0
\(335\) 0 0
\(336\) −2.00000 −0.109109
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) −9.00000 −0.489535
\(339\) 36.0000 1.95525
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 8.00000 0.428845
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 5.00000 0.267261
\(351\) 8.00000 0.427008
\(352\) −2.00000 −0.106600
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 8.00000 0.425195
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 2.00000 0.105851
\(358\) 12.0000 0.634220
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 12.0000 0.630706
\(363\) −14.0000 −0.734809
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) −24.0000 −1.25450
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 4.00000 0.208514
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) −2.00000 −0.103835
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 4.00000 0.205738
\(379\) 14.0000 0.719132 0.359566 0.933120i \(-0.382925\pi\)
0.359566 + 0.933120i \(0.382925\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 2.00000 0.102062
\(385\) 0 0
\(386\) −26.0000 −1.32337
\(387\) 0 0
\(388\) 6.00000 0.304604
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 1.00000 0.0505076
\(393\) 28.0000 1.41241
\(394\) 8.00000 0.403034
\(395\) 0 0
\(396\) −2.00000 −0.100504
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) −16.0000 −0.798007
\(403\) 0 0
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) −4.00000 −0.198517
\(407\) −16.0000 −0.793091
\(408\) −2.00000 −0.0990148
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 8.00000 0.394132
\(413\) −4.00000 −0.196827
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 28.0000 1.37117
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) −10.0000 −0.486792
\(423\) 0 0
\(424\) 2.00000 0.0971286
\(425\) 5.00000 0.242536
\(426\) 24.0000 1.16280
\(427\) 12.0000 0.580721
\(428\) 10.0000 0.483368
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −20.0000 −0.963366 −0.481683 0.876346i \(-0.659974\pi\)
−0.481683 + 0.876346i \(0.659974\pi\)
\(432\) −4.00000 −0.192450
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) 0 0
\(438\) −28.0000 −1.33789
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 2.00000 0.0951303
\(443\) −40.0000 −1.90046 −0.950229 0.311553i \(-0.899151\pi\)
−0.950229 + 0.311553i \(0.899151\pi\)
\(444\) 16.0000 0.759326
\(445\) 0 0
\(446\) −24.0000 −1.13643
\(447\) 12.0000 0.567581
\(448\) −1.00000 −0.0472456
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) −5.00000 −0.235702
\(451\) 4.00000 0.188353
\(452\) 18.0000 0.846649
\(453\) −16.0000 −0.751746
\(454\) 6.00000 0.281594
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) −14.0000 −0.654177
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 4.00000 0.186097
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) −30.0000 −1.38972
\(467\) 16.0000 0.740392 0.370196 0.928954i \(-0.379291\pi\)
0.370196 + 0.928954i \(0.379291\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −44.0000 −2.02741
\(472\) 4.00000 0.184115
\(473\) 0 0
\(474\) 24.0000 1.10236
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) 2.00000 0.0915737
\(478\) −24.0000 −1.09773
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) −26.0000 −1.18427
\(483\) −8.00000 −0.364013
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) −12.0000 −0.543214
\(489\) −28.0000 −1.26620
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) −4.00000 −0.180334
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 8.00000 0.358489
\(499\) 30.0000 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −28.0000 −1.24970
\(503\) −28.0000 −1.24846 −0.624229 0.781241i \(-0.714587\pi\)
−0.624229 + 0.781241i \(0.714587\pi\)
\(504\) −1.00000 −0.0445435
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) −18.0000 −0.799408
\(508\) 8.00000 0.354943
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 30.0000 1.32324
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) 0 0
\(521\) −34.0000 −1.48957 −0.744784 0.667306i \(-0.767447\pi\)
−0.744784 + 0.667306i \(0.767447\pi\)
\(522\) 4.00000 0.175075
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 14.0000 0.611593
\(525\) 10.0000 0.436436
\(526\) −8.00000 −0.348817
\(527\) 0 0
\(528\) −4.00000 −0.174078
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 4.00000 0.173259
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) −8.00000 −0.345547
\(537\) 24.0000 1.03568
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) 24.0000 1.02994
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 4.00000 0.171184
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) 6.00000 0.256307
\(549\) −12.0000 −0.512148
\(550\) 10.0000 0.426401
\(551\) 0 0
\(552\) 8.00000 0.340503
\(553\) −12.0000 −0.510292
\(554\) −12.0000 −0.509831
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) 34.0000 1.44063 0.720313 0.693649i \(-0.243998\pi\)
0.720313 + 0.693649i \(0.243998\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) −10.0000 −0.421825
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 18.0000 0.756596
\(567\) 11.0000 0.461957
\(568\) 12.0000 0.503509
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) 2.00000 0.0834784
\(575\) −20.0000 −0.834058
\(576\) 1.00000 0.0416667
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 1.00000 0.0415945
\(579\) −52.0000 −2.16105
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) 12.0000 0.497416
\(583\) −4.00000 −0.165663
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 2.00000 0.0824786
\(589\) 0 0
\(590\) 0 0
\(591\) 16.0000 0.658152
\(592\) 8.00000 0.328798
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 8.00000 0.328244
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 40.0000 1.63709
\(598\) −8.00000 −0.327144
\(599\) 48.0000 1.96123 0.980613 0.195952i \(-0.0627798\pi\)
0.980613 + 0.195952i \(0.0627798\pi\)
\(600\) −10.0000 −0.408248
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) −8.00000 −0.325785
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) −20.0000 −0.812444
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) −8.00000 −0.324176
\(610\) 0 0
\(611\) 0 0
\(612\) −1.00000 −0.0404226
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 2.00000 0.0805823
\(617\) 10.0000 0.402585 0.201292 0.979531i \(-0.435486\pi\)
0.201292 + 0.979531i \(0.435486\pi\)
\(618\) 16.0000 0.643614
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) −16.0000 −0.642058
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) −4.00000 −0.160128
\(625\) 25.0000 1.00000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −24.0000 −0.955425 −0.477712 0.878516i \(-0.658534\pi\)
−0.477712 + 0.878516i \(0.658534\pi\)
\(632\) 12.0000 0.477334
\(633\) −20.0000 −0.794929
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) 4.00000 0.158610
\(637\) −2.00000 −0.0792429
\(638\) −8.00000 −0.316723
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 20.0000 0.789337
\(643\) 50.0000 1.97181 0.985904 0.167313i \(-0.0535092\pi\)
0.985904 + 0.167313i \(0.0535092\pi\)
\(644\) −4.00000 −0.157622
\(645\) 0 0
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) −11.0000 −0.432121
\(649\) −8.00000 −0.314027
\(650\) 10.0000 0.392232
\(651\) 0 0
\(652\) −14.0000 −0.548282
\(653\) 12.0000 0.469596 0.234798 0.972044i \(-0.424557\pi\)
0.234798 + 0.972044i \(0.424557\pi\)
\(654\) 8.00000 0.312825
\(655\) 0 0
\(656\) −2.00000 −0.0780869
\(657\) −14.0000 −0.546192
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −8.00000 −0.310929
\(663\) 4.00000 0.155347
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 8.00000 0.309994
\(667\) 16.0000 0.619522
\(668\) 0 0
\(669\) −48.0000 −1.85579
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) −2.00000 −0.0771517
\(673\) −18.0000 −0.693849 −0.346925 0.937893i \(-0.612774\pi\)
−0.346925 + 0.937893i \(0.612774\pi\)
\(674\) 2.00000 0.0770371
\(675\) 20.0000 0.769800
\(676\) −9.00000 −0.346154
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 36.0000 1.38257
\(679\) −6.00000 −0.230259
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 22.0000 0.841807 0.420903 0.907106i \(-0.361713\pi\)
0.420903 + 0.907106i \(0.361713\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) −28.0000 −1.06827
\(688\) 0 0
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) −6.00000 −0.228251 −0.114125 0.993466i \(-0.536407\pi\)
−0.114125 + 0.993466i \(0.536407\pi\)
\(692\) 0 0
\(693\) 2.00000 0.0759737
\(694\) 18.0000 0.683271
\(695\) 0 0
\(696\) 8.00000 0.303239
\(697\) 2.00000 0.0757554
\(698\) 14.0000 0.529908
\(699\) −60.0000 −2.26941
\(700\) 5.00000 0.188982
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 8.00000 0.301941
\(703\) 0 0
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) 10.0000 0.376089
\(708\) 8.00000 0.300658
\(709\) 20.0000 0.751116 0.375558 0.926799i \(-0.377451\pi\)
0.375558 + 0.926799i \(0.377451\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) −6.00000 −0.224860
\(713\) 0 0
\(714\) 2.00000 0.0748481
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −48.0000 −1.79259
\(718\) −32.0000 −1.19423
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −19.0000 −0.707107
\(723\) −52.0000 −1.93390
\(724\) 12.0000 0.445976
\(725\) −20.0000 −0.742781
\(726\) −14.0000 −0.519589
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 2.00000 0.0741249
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) −24.0000 −0.887066
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 16.0000 0.589368
\(738\) −2.00000 −0.0736210
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.00000 −0.0734223
\(743\) −32.0000 −1.17397 −0.586983 0.809599i \(-0.699684\pi\)
−0.586983 + 0.809599i \(0.699684\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) 4.00000 0.146352
\(748\) 2.00000 0.0731272
\(749\) −10.0000 −0.365392
\(750\) 0 0
\(751\) 36.0000 1.31366 0.656829 0.754039i \(-0.271897\pi\)
0.656829 + 0.754039i \(0.271897\pi\)
\(752\) 0 0
\(753\) −56.0000 −2.04075
\(754\) −8.00000 −0.291343
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 14.0000 0.508503
\(759\) −16.0000 −0.580763
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 16.0000 0.579619
\(763\) −4.00000 −0.144810
\(764\) 0 0
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) −8.00000 −0.288863
\(768\) 2.00000 0.0721688
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 60.0000 2.16085
\(772\) −26.0000 −0.935760
\(773\) 34.0000 1.22290 0.611448 0.791285i \(-0.290588\pi\)
0.611448 + 0.791285i \(0.290588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 6.00000 0.215387
\(777\) −16.0000 −0.573997
\(778\) 30.0000 1.07555
\(779\) 0 0
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) −4.00000 −0.143040
\(783\) −16.0000 −0.571793
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 28.0000 0.998727
\(787\) −26.0000 −0.926800 −0.463400 0.886149i \(-0.653371\pi\)
−0.463400 + 0.886149i \(0.653371\pi\)
\(788\) 8.00000 0.284988
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) −2.00000 −0.0710669
\(793\) 24.0000 0.852265
\(794\) 20.0000 0.709773
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) 46.0000 1.62940 0.814702 0.579880i \(-0.196901\pi\)
0.814702 + 0.579880i \(0.196901\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.00000 −0.176777
\(801\) −6.00000 −0.212000
\(802\) −18.0000 −0.635602
\(803\) 28.0000 0.988099
\(804\) −16.0000 −0.564276
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −10.0000 −0.351799
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 34.0000 1.19390 0.596951 0.802278i \(-0.296379\pi\)
0.596951 + 0.802278i \(0.296379\pi\)
\(812\) −4.00000 −0.140372
\(813\) 0 0
\(814\) −16.0000 −0.560800
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) −10.0000 −0.349642
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) −8.00000 −0.279202 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(822\) 12.0000 0.418548
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 8.00000 0.278693
\(825\) 20.0000 0.696311
\(826\) −4.00000 −0.139178
\(827\) −26.0000 −0.904109 −0.452054 0.891990i \(-0.649309\pi\)
−0.452054 + 0.891990i \(0.649309\pi\)
\(828\) 4.00000 0.139010
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) −24.0000 −0.832551
\(832\) −2.00000 −0.0693375
\(833\) −1.00000 −0.0346479
\(834\) 28.0000 0.969561
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −26.0000 −0.898155
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 18.0000 0.620321
\(843\) −20.0000 −0.688837
\(844\) −10.0000 −0.344214
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 2.00000 0.0686803
\(849\) 36.0000 1.23552
\(850\) 5.00000 0.171499
\(851\) 32.0000 1.09695
\(852\) 24.0000 0.822226
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 12.0000 0.410632
\(855\) 0 0
\(856\) 10.0000 0.341793
\(857\) −10.0000 −0.341593 −0.170797 0.985306i \(-0.554634\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(858\) 8.00000 0.273115
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) −20.0000 −0.681203
\(863\) 56.0000 1.90626 0.953131 0.302558i \(-0.0978405\pi\)
0.953131 + 0.302558i \(0.0978405\pi\)
\(864\) −4.00000 −0.136083
\(865\) 0 0
\(866\) 26.0000 0.883516
\(867\) 2.00000 0.0679236
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 4.00000 0.135457
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) −28.0000 −0.946032
\(877\) 20.0000 0.675352 0.337676 0.941262i \(-0.390359\pi\)
0.337676 + 0.941262i \(0.390359\pi\)
\(878\) −20.0000 −0.674967
\(879\) −12.0000 −0.404750
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 1.00000 0.0336718
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 2.00000 0.0672673
\(885\) 0 0
\(886\) −40.0000 −1.34383
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 16.0000 0.536925
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 22.0000 0.737028
\(892\) −24.0000 −0.803579
\(893\) 0 0
\(894\) 12.0000 0.401340
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) −16.0000 −0.534224
\(898\) −10.0000 −0.333704
\(899\) 0 0
\(900\) −5.00000 −0.166667
\(901\) −2.00000 −0.0666297
\(902\) 4.00000 0.133185
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) 0 0
\(906\) −16.0000 −0.531564
\(907\) −26.0000 −0.863316 −0.431658 0.902037i \(-0.642071\pi\)
−0.431658 + 0.902037i \(0.642071\pi\)
\(908\) 6.00000 0.199117
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) −14.0000 −0.462321
\(918\) 4.00000 0.132020
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) −34.0000 −1.11973
\(923\) −24.0000 −0.789970
\(924\) 4.00000 0.131590
\(925\) −40.0000 −1.31519
\(926\) 8.00000 0.262896
\(927\) 8.00000 0.262754
\(928\) 4.00000 0.131306
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −30.0000 −0.982683
\(933\) 0 0
\(934\) 16.0000 0.523536
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 8.00000 0.261209
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) 4.00000 0.130396 0.0651981 0.997872i \(-0.479232\pi\)
0.0651981 + 0.997872i \(0.479232\pi\)
\(942\) −44.0000 −1.43360
\(943\) −8.00000 −0.260516
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −38.0000 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(948\) 24.0000 0.779484
\(949\) 28.0000 0.908918
\(950\) 0 0
\(951\) 48.0000 1.55651
\(952\) 1.00000 0.0324102
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 2.00000 0.0647524
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) −16.0000 −0.517207
\(958\) −36.0000 −1.16311
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −16.0000 −0.515861
\(963\) 10.0000 0.322245
\(964\) −26.0000 −0.837404
\(965\) 0 0
\(966\) −8.00000 −0.257396
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) −4.00000 −0.128366 −0.0641831 0.997938i \(-0.520444\pi\)
−0.0641831 + 0.997938i \(0.520444\pi\)
\(972\) −10.0000 −0.320750
\(973\) −14.0000 −0.448819
\(974\) −4.00000 −0.128168
\(975\) 20.0000 0.640513
\(976\) −12.0000 −0.384111
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) −28.0000 −0.895341
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) 4.00000 0.127710
\(982\) 20.0000 0.638226
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) −4.00000 −0.127515
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 12.0000 0.381193 0.190596 0.981669i \(-0.438958\pi\)
0.190596 + 0.981669i \(0.438958\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) −12.0000 −0.380617
\(995\) 0 0
\(996\) 8.00000 0.253490
\(997\) −20.0000 −0.633406 −0.316703 0.948525i \(-0.602576\pi\)
−0.316703 + 0.948525i \(0.602576\pi\)
\(998\) 30.0000 0.949633
\(999\) −32.0000 −1.01244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 238.2.a.e.1.1 1
3.2 odd 2 2142.2.a.d.1.1 1
4.3 odd 2 1904.2.a.a.1.1 1
5.4 even 2 5950.2.a.b.1.1 1
7.6 odd 2 1666.2.a.i.1.1 1
8.3 odd 2 7616.2.a.j.1.1 1
8.5 even 2 7616.2.a.c.1.1 1
17.16 even 2 4046.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.2.a.e.1.1 1 1.1 even 1 trivial
1666.2.a.i.1.1 1 7.6 odd 2
1904.2.a.a.1.1 1 4.3 odd 2
2142.2.a.d.1.1 1 3.2 odd 2
4046.2.a.i.1.1 1 17.16 even 2
5950.2.a.b.1.1 1 5.4 even 2
7616.2.a.c.1.1 1 8.5 even 2
7616.2.a.j.1.1 1 8.3 odd 2