L(s) = 1 | + 2·5-s − 12·13-s + 4·17-s + 3·25-s + 12·29-s − 12·37-s − 20·41-s + 2·49-s − 20·53-s + 12·61-s − 24·65-s − 28·73-s + 8·85-s − 4·89-s + 4·97-s + 28·101-s − 20·109-s − 12·113-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 24·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 3.32·13-s + 0.970·17-s + 3/5·25-s + 2.22·29-s − 1.97·37-s − 3.12·41-s + 2/7·49-s − 2.74·53-s + 1.53·61-s − 2.97·65-s − 3.27·73-s + 0.867·85-s − 0.423·89-s + 0.406·97-s + 2.78·101-s − 1.91·109-s − 1.12·113-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.99·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.609245026512276947697146238421, −8.312681871958482675893970014801, −7.67822247307498044046677545125, −7.18880346144848821197627995561, −6.82423053307536595497404589251, −6.46041242786302870623045801913, −5.61049576810701540702833296151, −5.12597312940943561354086695880, −4.92167313563440441781925895939, −4.43140184316888462520939708171, −3.20808194979498891977471116338, −2.97865181251010540219662645668, −2.19282779410354418054159546466, −1.55129913823425505871935815725, 0,
1.55129913823425505871935815725, 2.19282779410354418054159546466, 2.97865181251010540219662645668, 3.20808194979498891977471116338, 4.43140184316888462520939708171, 4.92167313563440441781925895939, 5.12597312940943561354086695880, 5.61049576810701540702833296151, 6.46041242786302870623045801913, 6.82423053307536595497404589251, 7.18880346144848821197627995561, 7.67822247307498044046677545125, 8.312681871958482675893970014801, 8.609245026512276947697146238421