| L(s) = 1 | + 8·7-s + 4·13-s − 16·19-s − 10·25-s + 8·31-s − 20·37-s − 16·43-s + 34·49-s + 28·61-s + 32·67-s − 20·73-s + 8·79-s + 32·91-s + 28·97-s − 40·103-s + 4·109-s − 22·121-s + 127-s + 131-s − 128·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
| L(s) = 1 | + 3.02·7-s + 1.10·13-s − 3.67·19-s − 2·25-s + 1.43·31-s − 3.28·37-s − 2.43·43-s + 34/7·49-s + 3.58·61-s + 3.90·67-s − 2.34·73-s + 0.900·79-s + 3.35·91-s + 2.84·97-s − 3.94·103-s + 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s − 11.0·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.474585992\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.474585992\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.79487777633048798084752051242, −14.94637601970120006145797521849, −14.94637601970120006145797521849, −14.14961250099870306907964598019, −14.14961250099870306907964598019, −13.16759329932274946491561130296, −13.16759329932274946491561130296, −11.94687294246884746693957837802, −11.94687294246884746693957837802, −11.12315991811672295662035767470, −11.12315991811672295662035767470, −10.22525649903538281666764318697, −10.22525649903538281666764318697, −8.662053039688615672125838925077, −8.662053039688615672125838925077, −8.061333242868226986239179539676, −8.061333242868226986239179539676, −6.62696738834082263668854358565, −6.62696738834082263668854358565, −5.24060664699283394077045448716, −5.24060664699283394077045448716, −4.05061428132231144121252913355, −4.05061428132231144121252913355, −1.92209901273574427656973400179, −1.92209901273574427656973400179,
1.92209901273574427656973400179, 1.92209901273574427656973400179, 4.05061428132231144121252913355, 4.05061428132231144121252913355, 5.24060664699283394077045448716, 5.24060664699283394077045448716, 6.62696738834082263668854358565, 6.62696738834082263668854358565, 8.061333242868226986239179539676, 8.061333242868226986239179539676, 8.662053039688615672125838925077, 8.662053039688615672125838925077, 10.22525649903538281666764318697, 10.22525649903538281666764318697, 11.12315991811672295662035767470, 11.12315991811672295662035767470, 11.94687294246884746693957837802, 11.94687294246884746693957837802, 13.16759329932274946491561130296, 13.16759329932274946491561130296, 14.14961250099870306907964598019, 14.14961250099870306907964598019, 14.94637601970120006145797521849, 14.94637601970120006145797521849, 15.79487777633048798084752051242