| L(s) = 1 | + 3-s − 4·7-s + 9-s + 4·13-s + 16·19-s − 4·21-s + 27-s − 20·37-s + 4·39-s − 24·43-s − 2·49-s + 16·57-s + 4·61-s − 4·63-s − 16·67-s + 8·73-s − 16·79-s + 81-s − 16·91-s + 16·97-s − 4·103-s − 12·109-s − 20·111-s + 4·117-s − 18·121-s + 127-s − 24·129-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 1.51·7-s + 1/3·9-s + 1.10·13-s + 3.67·19-s − 0.872·21-s + 0.192·27-s − 3.28·37-s + 0.640·39-s − 3.65·43-s − 2/7·49-s + 2.11·57-s + 0.512·61-s − 0.503·63-s − 1.95·67-s + 0.936·73-s − 1.80·79-s + 1/9·81-s − 1.67·91-s + 1.62·97-s − 0.394·103-s − 1.14·109-s − 1.89·111-s + 0.369·117-s − 1.63·121-s + 0.0887·127-s − 2.11·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.065360238159720695767955399926, −7.15562382903539764269849136934, −7.15109339700237674664040328399, −6.63560342158760211146375054979, −6.20989492713295015084463586012, −5.56718290716607818845063804153, −5.14891659899478257407149456127, −4.90786055385638384453526942829, −3.68478607534762393615004752252, −3.63702338059271712194862462334, −3.07956734277475342949311345221, −2.98769726639906032012813910091, −1.65944442938371927957526732518, −1.32041558029711473446320898964, 0,
1.32041558029711473446320898964, 1.65944442938371927957526732518, 2.98769726639906032012813910091, 3.07956734277475342949311345221, 3.63702338059271712194862462334, 3.68478607534762393615004752252, 4.90786055385638384453526942829, 5.14891659899478257407149456127, 5.56718290716607818845063804153, 6.20989492713295015084463586012, 6.63560342158760211146375054979, 7.15109339700237674664040328399, 7.15562382903539764269849136934, 8.065360238159720695767955399926