Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 97 x^{2} )^{2}$ |
$1 - 16 x + 258 x^{2} - 1552 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.366875061252$, $\pm0.366875061252$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $118$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8100$ | $91011600$ | $836291960100$ | $7837773373440000$ | $73739650906502302500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $9670$ | $916306$ | $88533118$ | $8587018642$ | $832969059910$ | $80798292114706$ | $7837433941136638$ | $760231060687893202$ | $73742412672123761350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 118 curves (of which all are hyperelliptic):
- $y^2=91 x^6+84 x^5+19 x^4+55 x^3+55 x^2+41 x+32$
- $y^2=88 x^6+3 x^5+83 x^4+96 x^3+17 x^2+44 x+93$
- $y^2=38 x^6+44 x^4+44 x^2+38$
- $y^2=35 x^5+41 x^4+89 x^3+x^2+17 x+50$
- $y^2=42 x^6+59 x^5+40 x^4+14 x^3+41 x^2+7 x+19$
- $y^2=76 x^6+8 x^5+16 x^4+77 x^3+73 x^2+27 x+63$
- $y^2=14 x^6+68 x^5+8 x^4+72 x^3+x^2+63 x+87$
- $y^2=59 x^6+8 x^5+65 x^4+56 x^3+65 x^2+8 x+59$
- $y^2=74 x^6+8 x^5+35 x^4+92 x^3+35 x^2+8 x+74$
- $y^2=73 x^6+52 x^5+41 x^4+60 x^3+19 x^2+36 x+27$
- $y^2=76 x^6+70 x^5+44 x^4+67 x^3+56 x^2+23 x+57$
- $y^2=67 x^6+40 x^5+34 x^4+92 x^3+84 x^2+78 x+22$
- $y^2=57 x^6+53 x^5+50 x^4+4 x^3+25 x^2+86 x+92$
- $y^2=24 x^6+58 x^5+57 x^4+75 x^3+48 x^2+61 x+20$
- $y^2=12 x^6+44 x^5+38 x^4+45 x^3+14 x^2+89 x+47$
- $y^2=24 x^6+74 x^5+94 x^4+44 x^3+61 x^2+39 x+92$
- $y^2=2 x^6+28 x^5+84 x^4+12 x^3+82 x^2+39 x+24$
- $y^2=62 x^6+21 x^5+46 x^4+39 x^3+7 x^2+56 x+35$
- $y^2=90 x^6+48 x^5+50 x^4+53 x^3+35 x^2+8 x+59$
- $y^2=23 x^6+10 x^5+17 x^4+92 x^3+57 x^2+85 x+32$
- and 98 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.