# Stored data for abelian variety isogeny class 2.97.aq_jy, downloaded from the LMFDB on 02 September 2025. {"abvar_count": 8100, "abvar_counts": [8100, 91011600, 836291960100, 7837773373440000, 73739650906502302500, 693839907880058271056400, 6528363391629785180018888100, 61425368063974550039303946240000, 577951264088840067750615432357224100, 5437943427986635837584741570705459690000], "abvar_counts_str": "8100 91011600 836291960100 7837773373440000 73739650906502302500 693839907880058271056400 6528363391629785180018888100 61425368063974550039303946240000 577951264088840067750615432357224100 5437943427986635837584741570705459690000 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.366875061252343, 0.366875061252343], "center_dim": 2, "curve_count": 82, "curve_counts": [82, 9670, 916306, 88533118, 8587018642, 832969059910, 80798292114706, 7837433941136638, 760231060687893202, 73742412672123761350], "curve_counts_str": "82 9670 916306 88533118 8587018642 832969059910 80798292114706 7837433941136638 760231060687893202 73742412672123761350 ", "curves": ["y^2=91*x^6+84*x^5+19*x^4+55*x^3+55*x^2+41*x+32", "y^2=88*x^6+3*x^5+83*x^4+96*x^3+17*x^2+44*x+93", "y^2=38*x^6+44*x^4+44*x^2+38", "y^2=35*x^5+41*x^4+89*x^3+x^2+17*x+50", "y^2=42*x^6+59*x^5+40*x^4+14*x^3+41*x^2+7*x+19", "y^2=76*x^6+8*x^5+16*x^4+77*x^3+73*x^2+27*x+63", "y^2=14*x^6+68*x^5+8*x^4+72*x^3+x^2+63*x+87", "y^2=59*x^6+8*x^5+65*x^4+56*x^3+65*x^2+8*x+59", "y^2=74*x^6+8*x^5+35*x^4+92*x^3+35*x^2+8*x+74", "y^2=73*x^6+52*x^5+41*x^4+60*x^3+19*x^2+36*x+27", "y^2=76*x^6+70*x^5+44*x^4+67*x^3+56*x^2+23*x+57", "y^2=67*x^6+40*x^5+34*x^4+92*x^3+84*x^2+78*x+22", "y^2=57*x^6+53*x^5+50*x^4+4*x^3+25*x^2+86*x+92", "y^2=24*x^6+58*x^5+57*x^4+75*x^3+48*x^2+61*x+20", "y^2=12*x^6+44*x^5+38*x^4+45*x^3+14*x^2+89*x+47", "y^2=24*x^6+74*x^5+94*x^4+44*x^3+61*x^2+39*x+92", "y^2=2*x^6+28*x^5+84*x^4+12*x^3+82*x^2+39*x+24", "y^2=62*x^6+21*x^5+46*x^4+39*x^3+7*x^2+56*x+35", "y^2=90*x^6+48*x^5+50*x^4+53*x^3+35*x^2+8*x+59", "y^2=23*x^6+10*x^5+17*x^4+92*x^3+57*x^2+85*x+32", "y^2=50*x^6+86*x^5+32*x^4+30*x^3+2*x^2+36*x+81", "y^2=20*x^6+66*x^5+51*x^4+43*x^3+51*x^2+66*x+20", "y^2=12*x^6+90*x^5+12*x^4+16*x^3+45*x^2+37*x+20", "y^2=56*x^6+14*x^5+92*x^4+48*x^3+92*x^2+14*x+56", "y^2=31*x^6+66*x^5+59*x^4+68*x^3+69*x^2+68*x+51", "y^2=72*x^6+70*x^5+95*x^4+91*x^3+24*x^2+89*x+35", "y^2=84*x^6+91*x^5+18*x^4+23*x^3+18*x^2+91*x+84", "y^2=5*x^6+95*x^5+89*x^4+80*x^3+x^2+3*x+7", "y^2=90*x^6+81*x^5+48*x^4+31*x^3+48*x^2+81*x+90", "y^2=x^6+53*x^3+79", "y^2=41*x^6+70*x^5+77*x^4+65*x^3+94*x^2+6*x+76", "y^2=45*x^6+19*x^5+78*x^4+15*x^3+37*x^2+21*x+34", "y^2=53*x^5+74*x^3+80*x^2+28*x+46", "y^2=82*x^6+47*x^5+3*x^4+64*x^3+54*x^2+55*x+20", "y^2=76*x^6+16*x^4+16*x^2+76", "y^2=27*x^6+30*x^5+90*x^4+56*x^3+23*x^2+87*x+52", "y^2=42*x^6+24*x^5+54*x^4+83*x^3+67*x^2+30*x+17", "y^2=16*x^6+47*x^5+19*x^4+10*x^3+8*x^2+27*x+26", "y^2=80*x^6+89*x^5+30*x^4+83*x^3+30*x^2+89*x+80", "y^2=16*x^6+88*x^5+34*x^4+92*x^3+77*x^2+71*x+43", "y^2=56*x^6+58*x^5+43*x^4+40*x^3+81*x^2+82*x+5", "y^2=88*x^6+51*x^5+16*x^4+88*x^3+16*x^2+51*x+88", "y^2=40*x^6+61*x^5+26*x^4+79*x^3+17*x^2+73*x+5", "y^2=66*x^6+21*x^5+92*x^4+39*x^3+92*x^2+21*x+66", "y^2=x^6+93*x^3+33", "y^2=18*x^6+52*x^5+75*x^4+66*x^3+53*x^2+14*x+47", "y^2=42*x^6+18*x^5+30*x^4+18*x^3+94*x^2+15*x+72", "y^2=34*x^6+65*x^5+15*x^4+44*x^3+19*x^2+31*x+67", "y^2=60*x^6+31*x^5+4*x^4+89*x^3+58*x^2+23*x+34", "y^2=93*x^6+46*x^5+92*x^4+52*x^3+92*x^2+46*x+93", "y^2=32*x^6+13*x^5+64*x^4+75*x^3+25*x^2+21*x+9", "y^2=47*x^6+34*x^5+20*x^4+95*x^3+20*x^2+34*x+47", "y^2=74*x^6+41*x^5+33*x^4+66*x^3+80*x^2+52*x+66", "y^2=60*x^6+37*x^5+28*x^4+54*x^3+90*x^2+69*x+90", "y^2=12*x^6+37*x^5+3*x^4+66*x^3+72*x^2+69*x+18", "y^2=x^6+x^3+18", "y^2=85*x^6+29*x^5+13*x^4+35*x^3+42*x^2+17*x", "y^2=20*x^6+55*x^5+47*x^4+42*x^3+81*x^2+49*x+63", "y^2=26*x^6+23*x^5+31*x^4+5*x^3+54*x^2+17*x+23", "y^2=88*x^6+96*x^5+71*x^4+95*x^3+46*x^2+40", "y^2=18*x^6+43*x^5+59*x^4+92*x^3+82*x^2+64*x+12", "y^2=52*x^6+13*x^5+75*x^4+60*x^3+3*x^2+77*x+55", "y^2=14*x^6+14*x^5+31*x^4+37*x^3+33*x^2+52*x+71", "y^2=80*x^6+93*x^4+93*x^2+80", "y^2=17*x^6+12*x^5+74*x^4+21*x^3+17*x^2+67*x+2", "y^2=64*x^6+11*x^4+11*x^2+64", "y^2=x^6+94*x^3+70", "y^2=87*x^6+2*x^5+4*x^4+25*x^3+15*x^2+31*x+94", "y^2=87*x^6+89*x^5+58*x^4+10*x^3+34*x^2+48*x+82", "y^2=11*x^6+23*x^5+17*x^4+31*x^3+17*x^2+23*x+11", "y^2=57*x^6+51*x^5+28*x^4+58*x^3+74*x^2+38*x+56", "y^2=x^6+16*x^3+22", "y^2=60*x^6+91*x^5+31*x^4+64*x^3+46*x^2+48", "y^2=73*x^6+66*x^5+14*x^4+47*x^3+22*x^2+77*x+57", "y^2=57*x^6+17*x^5+81*x^4+25*x^3+81*x^2+17*x+57", "y^2=60*x^6+90*x^5+77*x^4+29*x^3+33*x^2+24*x+54", "y^2=67*x^6+25*x^5+x^4+2*x^3+x^2+25*x+67", "y^2=86*x^6+56*x^5+2*x^4+57*x^3+79*x^2+74*x+65", "y^2=46*x^6+40*x^5+25*x^4+30*x^3+x^2+28*x+30", "y^2=74*x^6+33*x^5+28*x^4+8*x^3+55*x^2+50*x+17", "y^2=80*x^6+45*x^5+78*x^4+23*x^3+48*x^2+71*x+7", "y^2=85*x^6+66*x^5+44*x^4+51*x^3+18*x^2+20*x+30", "y^2=58*x^6+16*x^5+33*x^4+5*x^3+75*x^2+61*x+87", "y^2=87*x^6+9*x^5+48*x^4+54*x^3+48*x^2+9*x+87", "y^2=79*x^6+11*x^5+2*x^4+57*x^3+72*x^2+94*x+18", "y^2=69*x^6+27*x^5+6*x^4+17*x^3+94*x^2+31*x+52", "y^2=42*x^6+79*x^5+4*x^4+44*x^3+41*x^2+43*x+49", "y^2=11*x^6+8*x^5+90*x^4+86*x^3+55*x^2+23*x+37", "y^2=x^6+86*x^3+27", "y^2=22*x^6+49*x^5+x^4+9*x^3+9*x^2+13*x+15", "y^2=41*x^5+37*x^4+96*x^3+49*x^2+95*x+96", "y^2=46*x^6+88*x^5+53*x^4+92*x^3+44*x^2+32*x+59", "y^2=93*x^6+21*x^5+61*x^4+32*x^3+4*x^2+16*x+13", "y^2=44*x^6+65*x^5+50*x^4+32*x^3+94*x^2+50*x+90", "y^2=79*x^6+41*x^5+38*x^4+87*x^3+37*x^2+56*x+89", "y^2=23*x^6+65*x^5+11*x^4+70*x^3+6*x^2+49*x+10", "y^2=73*x^6+6*x^5+51*x^4+20*x^3+7*x^2+16*x+73", "y^2=82*x^6+27*x^5+73*x^4+73*x^3+25*x^2+49*x+80", "y^2=11*x^6+67*x^5+6*x^4+19*x^3+75*x^2+17*x+11", "y^2=73*x^6+43*x^5+24*x^4+6*x^3+94*x^2+36*x+15", "y^2=x^6+36*x^3+96", "y^2=30*x^6+81*x^5+69*x^4+38*x^3+51*x^2+39*x+6", "y^2=4*x^6+8*x^5+60*x^4+58*x^3+14*x^2+72*x+86", "y^2=47*x^6+25*x^5+12*x^4+27*x^3+11*x^2+84*x+36", "y^2=33*x^6+81*x^5+4*x^4+41*x^3+11*x^2+73*x+27", "y^2=x^6+2*x^3+8", "y^2=14*x^6+82*x^5+38*x^4+61*x^3+44*x^2+50*x+60", "y^2=34*x^6+34*x^5+14*x^4+37*x^3+95*x^2+13*x+18", "y^2=40*x^6+76*x^5+90*x^4+80*x^3+25*x^2+51*x+46", "y^2=29*x^6+17*x^5+60*x^4+69*x^3+60*x^2+17*x+29", "y^2=49*x^6+20*x^5+26*x^4+53*x^3+26*x^2+20*x+49", "y^2=63*x^6+36*x^5+16*x^4+16*x^3+23*x^2+67*x+17", "y^2=55*x^6+38*x^5+44*x^4+17*x^3+37*x^2+45*x+26", "y^2=87*x^6+5*x^5+10*x^4+49*x^3+28*x^2+78*x+87", "y^2=93*x^6+12*x^5+27*x^4+92*x^3+71*x^2+33*x+74", "y^2=26*x^6+48*x^5+10*x^4+14*x^3+24*x^2+42*x+83", "y^2=60*x^6+80*x^5+55*x^4+71*x^3+14*x^2+52*x+84", "y^2=24*x^6+55*x^5+37*x^4+53*x^3+37*x^2+55*x+24"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.4.1"], "geometric_splitting_field": "2.0.4.1", "geometric_splitting_polynomials": [[1, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 118, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 118, "label": "2.97.aq_jy", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.4.1"], "p": 97, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -16, 258, -1552, 9409], "poly_str": "1 -16 258 -1552 9409 ", "primitive_models": [], "q": 97, "real_poly": [1, -16, 64], "simple_distinct": ["1.97.ai"], "simple_factors": ["1.97.aiA", "1.97.aiB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.4.1", "splitting_polynomials": [[1, 0, 1]], "twist_count": 16, "twists": [["2.97.a_fa", "2.9409.ka_cavu", 2], ["2.97.q_jy", "2.9409.ka_cavu", 2], ["2.97.i_abh", "2.912673.fjs_lfmsg", 3], ["2.97.abk_ty", "2.88529281.fro_pfnewc", 4], ["2.97.aba_na", "2.88529281.fro_pfnewc", 4], ["2.97.ak_by", "2.88529281.fro_pfnewc", 4], ["2.97.a_afa", "2.88529281.fro_pfnewc", 4], ["2.97.k_by", "2.88529281.fro_pfnewc", 4], ["2.97.ba_na", "2.88529281.fro_pfnewc", 4], ["2.97.bk_ty", "2.88529281.fro_pfnewc", 4], ["2.97.ai_abh", "2.832972004929.aglooa_sjjxgaaty", 6], ["2.97.a_afo", "2.7837433594376961.bdevecq_mlznbkelqgos", 8], ["2.97.a_fo", "2.7837433594376961.bdevecq_mlznbkelqgos", 8], ["2.97.as_it", "2.693842360995438000295041.aevchnjmme_blpuxxpraijymzitkg", 12], ["2.97.s_it", "2.693842360995438000295041.aevchnjmme_blpuxxpraijymzitkg", 12]]}