# Curves in abelian variety isogeny class 2.97.aq_jy, downloaded from the LMFDB on 02 September 2025. y^2=91*x^6+84*x^5+19*x^4+55*x^3+55*x^2+41*x+32 y^2=88*x^6+3*x^5+83*x^4+96*x^3+17*x^2+44*x+93 y^2=38*x^6+44*x^4+44*x^2+38 y^2=35*x^5+41*x^4+89*x^3+x^2+17*x+50 y^2=42*x^6+59*x^5+40*x^4+14*x^3+41*x^2+7*x+19 y^2=76*x^6+8*x^5+16*x^4+77*x^3+73*x^2+27*x+63 y^2=14*x^6+68*x^5+8*x^4+72*x^3+x^2+63*x+87 y^2=59*x^6+8*x^5+65*x^4+56*x^3+65*x^2+8*x+59 y^2=74*x^6+8*x^5+35*x^4+92*x^3+35*x^2+8*x+74 y^2=73*x^6+52*x^5+41*x^4+60*x^3+19*x^2+36*x+27 y^2=76*x^6+70*x^5+44*x^4+67*x^3+56*x^2+23*x+57 y^2=67*x^6+40*x^5+34*x^4+92*x^3+84*x^2+78*x+22 y^2=57*x^6+53*x^5+50*x^4+4*x^3+25*x^2+86*x+92 y^2=24*x^6+58*x^5+57*x^4+75*x^3+48*x^2+61*x+20 y^2=12*x^6+44*x^5+38*x^4+45*x^3+14*x^2+89*x+47 y^2=24*x^6+74*x^5+94*x^4+44*x^3+61*x^2+39*x+92 y^2=2*x^6+28*x^5+84*x^4+12*x^3+82*x^2+39*x+24 y^2=62*x^6+21*x^5+46*x^4+39*x^3+7*x^2+56*x+35 y^2=90*x^6+48*x^5+50*x^4+53*x^3+35*x^2+8*x+59 y^2=23*x^6+10*x^5+17*x^4+92*x^3+57*x^2+85*x+32 y^2=50*x^6+86*x^5+32*x^4+30*x^3+2*x^2+36*x+81 y^2=20*x^6+66*x^5+51*x^4+43*x^3+51*x^2+66*x+20 y^2=12*x^6+90*x^5+12*x^4+16*x^3+45*x^2+37*x+20 y^2=56*x^6+14*x^5+92*x^4+48*x^3+92*x^2+14*x+56 y^2=31*x^6+66*x^5+59*x^4+68*x^3+69*x^2+68*x+51 y^2=72*x^6+70*x^5+95*x^4+91*x^3+24*x^2+89*x+35 y^2=84*x^6+91*x^5+18*x^4+23*x^3+18*x^2+91*x+84 y^2=5*x^6+95*x^5+89*x^4+80*x^3+x^2+3*x+7 y^2=90*x^6+81*x^5+48*x^4+31*x^3+48*x^2+81*x+90 y^2=x^6+53*x^3+79 y^2=41*x^6+70*x^5+77*x^4+65*x^3+94*x^2+6*x+76 y^2=45*x^6+19*x^5+78*x^4+15*x^3+37*x^2+21*x+34 y^2=53*x^5+74*x^3+80*x^2+28*x+46 y^2=82*x^6+47*x^5+3*x^4+64*x^3+54*x^2+55*x+20 y^2=76*x^6+16*x^4+16*x^2+76 y^2=27*x^6+30*x^5+90*x^4+56*x^3+23*x^2+87*x+52 y^2=42*x^6+24*x^5+54*x^4+83*x^3+67*x^2+30*x+17 y^2=16*x^6+47*x^5+19*x^4+10*x^3+8*x^2+27*x+26 y^2=80*x^6+89*x^5+30*x^4+83*x^3+30*x^2+89*x+80 y^2=16*x^6+88*x^5+34*x^4+92*x^3+77*x^2+71*x+43 y^2=56*x^6+58*x^5+43*x^4+40*x^3+81*x^2+82*x+5 y^2=88*x^6+51*x^5+16*x^4+88*x^3+16*x^2+51*x+88 y^2=40*x^6+61*x^5+26*x^4+79*x^3+17*x^2+73*x+5 y^2=66*x^6+21*x^5+92*x^4+39*x^3+92*x^2+21*x+66 y^2=x^6+93*x^3+33 y^2=18*x^6+52*x^5+75*x^4+66*x^3+53*x^2+14*x+47 y^2=42*x^6+18*x^5+30*x^4+18*x^3+94*x^2+15*x+72 y^2=34*x^6+65*x^5+15*x^4+44*x^3+19*x^2+31*x+67 y^2=60*x^6+31*x^5+4*x^4+89*x^3+58*x^2+23*x+34 y^2=93*x^6+46*x^5+92*x^4+52*x^3+92*x^2+46*x+93 y^2=32*x^6+13*x^5+64*x^4+75*x^3+25*x^2+21*x+9 y^2=47*x^6+34*x^5+20*x^4+95*x^3+20*x^2+34*x+47 y^2=74*x^6+41*x^5+33*x^4+66*x^3+80*x^2+52*x+66 y^2=60*x^6+37*x^5+28*x^4+54*x^3+90*x^2+69*x+90 y^2=12*x^6+37*x^5+3*x^4+66*x^3+72*x^2+69*x+18 y^2=x^6+x^3+18 y^2=85*x^6+29*x^5+13*x^4+35*x^3+42*x^2+17*x y^2=20*x^6+55*x^5+47*x^4+42*x^3+81*x^2+49*x+63 y^2=26*x^6+23*x^5+31*x^4+5*x^3+54*x^2+17*x+23 y^2=88*x^6+96*x^5+71*x^4+95*x^3+46*x^2+40 y^2=18*x^6+43*x^5+59*x^4+92*x^3+82*x^2+64*x+12 y^2=52*x^6+13*x^5+75*x^4+60*x^3+3*x^2+77*x+55 y^2=14*x^6+14*x^5+31*x^4+37*x^3+33*x^2+52*x+71 y^2=80*x^6+93*x^4+93*x^2+80 y^2=17*x^6+12*x^5+74*x^4+21*x^3+17*x^2+67*x+2 y^2=64*x^6+11*x^4+11*x^2+64 y^2=x^6+94*x^3+70 y^2=87*x^6+2*x^5+4*x^4+25*x^3+15*x^2+31*x+94 y^2=87*x^6+89*x^5+58*x^4+10*x^3+34*x^2+48*x+82 y^2=11*x^6+23*x^5+17*x^4+31*x^3+17*x^2+23*x+11 y^2=57*x^6+51*x^5+28*x^4+58*x^3+74*x^2+38*x+56 y^2=x^6+16*x^3+22 y^2=60*x^6+91*x^5+31*x^4+64*x^3+46*x^2+48 y^2=73*x^6+66*x^5+14*x^4+47*x^3+22*x^2+77*x+57 y^2=57*x^6+17*x^5+81*x^4+25*x^3+81*x^2+17*x+57 y^2=60*x^6+90*x^5+77*x^4+29*x^3+33*x^2+24*x+54 y^2=67*x^6+25*x^5+x^4+2*x^3+x^2+25*x+67 y^2=86*x^6+56*x^5+2*x^4+57*x^3+79*x^2+74*x+65 y^2=46*x^6+40*x^5+25*x^4+30*x^3+x^2+28*x+30 y^2=74*x^6+33*x^5+28*x^4+8*x^3+55*x^2+50*x+17 y^2=80*x^6+45*x^5+78*x^4+23*x^3+48*x^2+71*x+7 y^2=85*x^6+66*x^5+44*x^4+51*x^3+18*x^2+20*x+30 y^2=58*x^6+16*x^5+33*x^4+5*x^3+75*x^2+61*x+87 y^2=87*x^6+9*x^5+48*x^4+54*x^3+48*x^2+9*x+87 y^2=79*x^6+11*x^5+2*x^4+57*x^3+72*x^2+94*x+18 y^2=69*x^6+27*x^5+6*x^4+17*x^3+94*x^2+31*x+52 y^2=42*x^6+79*x^5+4*x^4+44*x^3+41*x^2+43*x+49 y^2=11*x^6+8*x^5+90*x^4+86*x^3+55*x^2+23*x+37 y^2=x^6+86*x^3+27 y^2=22*x^6+49*x^5+x^4+9*x^3+9*x^2+13*x+15 y^2=41*x^5+37*x^4+96*x^3+49*x^2+95*x+96 y^2=46*x^6+88*x^5+53*x^4+92*x^3+44*x^2+32*x+59 y^2=93*x^6+21*x^5+61*x^4+32*x^3+4*x^2+16*x+13 y^2=44*x^6+65*x^5+50*x^4+32*x^3+94*x^2+50*x+90 y^2=79*x^6+41*x^5+38*x^4+87*x^3+37*x^2+56*x+89 y^2=23*x^6+65*x^5+11*x^4+70*x^3+6*x^2+49*x+10 y^2=73*x^6+6*x^5+51*x^4+20*x^3+7*x^2+16*x+73 y^2=82*x^6+27*x^5+73*x^4+73*x^3+25*x^2+49*x+80 y^2=11*x^6+67*x^5+6*x^4+19*x^3+75*x^2+17*x+11 y^2=73*x^6+43*x^5+24*x^4+6*x^3+94*x^2+36*x+15 y^2=x^6+36*x^3+96 y^2=30*x^6+81*x^5+69*x^4+38*x^3+51*x^2+39*x+6 y^2=4*x^6+8*x^5+60*x^4+58*x^3+14*x^2+72*x+86 y^2=47*x^6+25*x^5+12*x^4+27*x^3+11*x^2+84*x+36 y^2=33*x^6+81*x^5+4*x^4+41*x^3+11*x^2+73*x+27 y^2=x^6+2*x^3+8 y^2=14*x^6+82*x^5+38*x^4+61*x^3+44*x^2+50*x+60 y^2=34*x^6+34*x^5+14*x^4+37*x^3+95*x^2+13*x+18 y^2=40*x^6+76*x^5+90*x^4+80*x^3+25*x^2+51*x+46 y^2=29*x^6+17*x^5+60*x^4+69*x^3+60*x^2+17*x+29 y^2=49*x^6+20*x^5+26*x^4+53*x^3+26*x^2+20*x+49 y^2=63*x^6+36*x^5+16*x^4+16*x^3+23*x^2+67*x+17 y^2=55*x^6+38*x^5+44*x^4+17*x^3+37*x^2+45*x+26 y^2=87*x^6+5*x^5+10*x^4+49*x^3+28*x^2+78*x+87 y^2=93*x^6+12*x^5+27*x^4+92*x^3+71*x^2+33*x+74 y^2=26*x^6+48*x^5+10*x^4+14*x^3+24*x^2+42*x+83 y^2=60*x^6+80*x^5+55*x^4+71*x^3+14*x^2+52*x+84 y^2=24*x^6+55*x^5+37*x^4+53*x^3+37*x^2+55*x+24