-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 8100, 'abvar_counts': [8100, 91011600, 836291960100, 7837773373440000, 73739650906502302500, 693839907880058271056400, 6528363391629785180018888100, 61425368063974550039303946240000, 577951264088840067750615432357224100, 5437943427986635837584741570705459690000], 'abvar_counts_str': '8100 91011600 836291960100 7837773373440000 73739650906502302500 693839907880058271056400 6528363391629785180018888100 61425368063974550039303946240000 577951264088840067750615432357224100 5437943427986635837584741570705459690000 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.366875061252343, 0.366875061252343], 'center_dim': 2, 'curve_count': 82, 'curve_counts': [82, 9670, 916306, 88533118, 8587018642, 832969059910, 80798292114706, 7837433941136638, 760231060687893202, 73742412672123761350], 'curve_counts_str': '82 9670 916306 88533118 8587018642 832969059910 80798292114706 7837433941136638 760231060687893202 73742412672123761350 ', 'curves': ['y^2=91*x^6+84*x^5+19*x^4+55*x^3+55*x^2+41*x+32', 'y^2=88*x^6+3*x^5+83*x^4+96*x^3+17*x^2+44*x+93', 'y^2=38*x^6+44*x^4+44*x^2+38', 'y^2=35*x^5+41*x^4+89*x^3+x^2+17*x+50', 'y^2=42*x^6+59*x^5+40*x^4+14*x^3+41*x^2+7*x+19', 'y^2=76*x^6+8*x^5+16*x^4+77*x^3+73*x^2+27*x+63', 'y^2=14*x^6+68*x^5+8*x^4+72*x^3+x^2+63*x+87', 'y^2=59*x^6+8*x^5+65*x^4+56*x^3+65*x^2+8*x+59', 'y^2=74*x^6+8*x^5+35*x^4+92*x^3+35*x^2+8*x+74', 'y^2=73*x^6+52*x^5+41*x^4+60*x^3+19*x^2+36*x+27', 'y^2=76*x^6+70*x^5+44*x^4+67*x^3+56*x^2+23*x+57', 'y^2=67*x^6+40*x^5+34*x^4+92*x^3+84*x^2+78*x+22', 'y^2=57*x^6+53*x^5+50*x^4+4*x^3+25*x^2+86*x+92', 'y^2=24*x^6+58*x^5+57*x^4+75*x^3+48*x^2+61*x+20', 'y^2=12*x^6+44*x^5+38*x^4+45*x^3+14*x^2+89*x+47', 'y^2=24*x^6+74*x^5+94*x^4+44*x^3+61*x^2+39*x+92', 'y^2=2*x^6+28*x^5+84*x^4+12*x^3+82*x^2+39*x+24', 'y^2=62*x^6+21*x^5+46*x^4+39*x^3+7*x^2+56*x+35', 'y^2=90*x^6+48*x^5+50*x^4+53*x^3+35*x^2+8*x+59', 'y^2=23*x^6+10*x^5+17*x^4+92*x^3+57*x^2+85*x+32', 'y^2=50*x^6+86*x^5+32*x^4+30*x^3+2*x^2+36*x+81', 'y^2=20*x^6+66*x^5+51*x^4+43*x^3+51*x^2+66*x+20', 'y^2=12*x^6+90*x^5+12*x^4+16*x^3+45*x^2+37*x+20', 'y^2=56*x^6+14*x^5+92*x^4+48*x^3+92*x^2+14*x+56', 'y^2=31*x^6+66*x^5+59*x^4+68*x^3+69*x^2+68*x+51', 'y^2=72*x^6+70*x^5+95*x^4+91*x^3+24*x^2+89*x+35', 'y^2=84*x^6+91*x^5+18*x^4+23*x^3+18*x^2+91*x+84', 'y^2=5*x^6+95*x^5+89*x^4+80*x^3+x^2+3*x+7', 'y^2=90*x^6+81*x^5+48*x^4+31*x^3+48*x^2+81*x+90', 'y^2=x^6+53*x^3+79', 'y^2=41*x^6+70*x^5+77*x^4+65*x^3+94*x^2+6*x+76', 'y^2=45*x^6+19*x^5+78*x^4+15*x^3+37*x^2+21*x+34', 'y^2=53*x^5+74*x^3+80*x^2+28*x+46', 'y^2=82*x^6+47*x^5+3*x^4+64*x^3+54*x^2+55*x+20', 'y^2=76*x^6+16*x^4+16*x^2+76', 'y^2=27*x^6+30*x^5+90*x^4+56*x^3+23*x^2+87*x+52', 'y^2=42*x^6+24*x^5+54*x^4+83*x^3+67*x^2+30*x+17', 'y^2=16*x^6+47*x^5+19*x^4+10*x^3+8*x^2+27*x+26', 'y^2=80*x^6+89*x^5+30*x^4+83*x^3+30*x^2+89*x+80', 'y^2=16*x^6+88*x^5+34*x^4+92*x^3+77*x^2+71*x+43', 'y^2=56*x^6+58*x^5+43*x^4+40*x^3+81*x^2+82*x+5', 'y^2=88*x^6+51*x^5+16*x^4+88*x^3+16*x^2+51*x+88', 'y^2=40*x^6+61*x^5+26*x^4+79*x^3+17*x^2+73*x+5', 'y^2=66*x^6+21*x^5+92*x^4+39*x^3+92*x^2+21*x+66', 'y^2=x^6+93*x^3+33', 'y^2=18*x^6+52*x^5+75*x^4+66*x^3+53*x^2+14*x+47', 'y^2=42*x^6+18*x^5+30*x^4+18*x^3+94*x^2+15*x+72', 'y^2=34*x^6+65*x^5+15*x^4+44*x^3+19*x^2+31*x+67', 'y^2=60*x^6+31*x^5+4*x^4+89*x^3+58*x^2+23*x+34', 'y^2=93*x^6+46*x^5+92*x^4+52*x^3+92*x^2+46*x+93', 'y^2=32*x^6+13*x^5+64*x^4+75*x^3+25*x^2+21*x+9', 'y^2=47*x^6+34*x^5+20*x^4+95*x^3+20*x^2+34*x+47', 'y^2=74*x^6+41*x^5+33*x^4+66*x^3+80*x^2+52*x+66', 'y^2=60*x^6+37*x^5+28*x^4+54*x^3+90*x^2+69*x+90', 'y^2=12*x^6+37*x^5+3*x^4+66*x^3+72*x^2+69*x+18', 'y^2=x^6+x^3+18', 'y^2=85*x^6+29*x^5+13*x^4+35*x^3+42*x^2+17*x', 'y^2=20*x^6+55*x^5+47*x^4+42*x^3+81*x^2+49*x+63', 'y^2=26*x^6+23*x^5+31*x^4+5*x^3+54*x^2+17*x+23', 'y^2=88*x^6+96*x^5+71*x^4+95*x^3+46*x^2+40', 'y^2=18*x^6+43*x^5+59*x^4+92*x^3+82*x^2+64*x+12', 'y^2=52*x^6+13*x^5+75*x^4+60*x^3+3*x^2+77*x+55', 'y^2=14*x^6+14*x^5+31*x^4+37*x^3+33*x^2+52*x+71', 'y^2=80*x^6+93*x^4+93*x^2+80', 'y^2=17*x^6+12*x^5+74*x^4+21*x^3+17*x^2+67*x+2', 'y^2=64*x^6+11*x^4+11*x^2+64', 'y^2=x^6+94*x^3+70', 'y^2=87*x^6+2*x^5+4*x^4+25*x^3+15*x^2+31*x+94', 'y^2=87*x^6+89*x^5+58*x^4+10*x^3+34*x^2+48*x+82', 'y^2=11*x^6+23*x^5+17*x^4+31*x^3+17*x^2+23*x+11', 'y^2=57*x^6+51*x^5+28*x^4+58*x^3+74*x^2+38*x+56', 'y^2=x^6+16*x^3+22', 'y^2=60*x^6+91*x^5+31*x^4+64*x^3+46*x^2+48', 'y^2=73*x^6+66*x^5+14*x^4+47*x^3+22*x^2+77*x+57', 'y^2=57*x^6+17*x^5+81*x^4+25*x^3+81*x^2+17*x+57', 'y^2=60*x^6+90*x^5+77*x^4+29*x^3+33*x^2+24*x+54', 'y^2=67*x^6+25*x^5+x^4+2*x^3+x^2+25*x+67', 'y^2=86*x^6+56*x^5+2*x^4+57*x^3+79*x^2+74*x+65', 'y^2=46*x^6+40*x^5+25*x^4+30*x^3+x^2+28*x+30', 'y^2=74*x^6+33*x^5+28*x^4+8*x^3+55*x^2+50*x+17', 'y^2=80*x^6+45*x^5+78*x^4+23*x^3+48*x^2+71*x+7', 'y^2=85*x^6+66*x^5+44*x^4+51*x^3+18*x^2+20*x+30', 'y^2=58*x^6+16*x^5+33*x^4+5*x^3+75*x^2+61*x+87', 'y^2=87*x^6+9*x^5+48*x^4+54*x^3+48*x^2+9*x+87', 'y^2=79*x^6+11*x^5+2*x^4+57*x^3+72*x^2+94*x+18', 'y^2=69*x^6+27*x^5+6*x^4+17*x^3+94*x^2+31*x+52', 'y^2=42*x^6+79*x^5+4*x^4+44*x^3+41*x^2+43*x+49', 'y^2=11*x^6+8*x^5+90*x^4+86*x^3+55*x^2+23*x+37', 'y^2=x^6+86*x^3+27', 'y^2=22*x^6+49*x^5+x^4+9*x^3+9*x^2+13*x+15', 'y^2=41*x^5+37*x^4+96*x^3+49*x^2+95*x+96', 'y^2=46*x^6+88*x^5+53*x^4+92*x^3+44*x^2+32*x+59', 'y^2=93*x^6+21*x^5+61*x^4+32*x^3+4*x^2+16*x+13', 'y^2=44*x^6+65*x^5+50*x^4+32*x^3+94*x^2+50*x+90', 'y^2=79*x^6+41*x^5+38*x^4+87*x^3+37*x^2+56*x+89', 'y^2=23*x^6+65*x^5+11*x^4+70*x^3+6*x^2+49*x+10', 'y^2=73*x^6+6*x^5+51*x^4+20*x^3+7*x^2+16*x+73', 'y^2=82*x^6+27*x^5+73*x^4+73*x^3+25*x^2+49*x+80', 'y^2=11*x^6+67*x^5+6*x^4+19*x^3+75*x^2+17*x+11', 'y^2=73*x^6+43*x^5+24*x^4+6*x^3+94*x^2+36*x+15', 'y^2=x^6+36*x^3+96', 'y^2=30*x^6+81*x^5+69*x^4+38*x^3+51*x^2+39*x+6', 'y^2=4*x^6+8*x^5+60*x^4+58*x^3+14*x^2+72*x+86', 'y^2=47*x^6+25*x^5+12*x^4+27*x^3+11*x^2+84*x+36', 'y^2=33*x^6+81*x^5+4*x^4+41*x^3+11*x^2+73*x+27', 'y^2=x^6+2*x^3+8', 'y^2=14*x^6+82*x^5+38*x^4+61*x^3+44*x^2+50*x+60', 'y^2=34*x^6+34*x^5+14*x^4+37*x^3+95*x^2+13*x+18', 'y^2=40*x^6+76*x^5+90*x^4+80*x^3+25*x^2+51*x+46', 'y^2=29*x^6+17*x^5+60*x^4+69*x^3+60*x^2+17*x+29', 'y^2=49*x^6+20*x^5+26*x^4+53*x^3+26*x^2+20*x+49', 'y^2=63*x^6+36*x^5+16*x^4+16*x^3+23*x^2+67*x+17', 'y^2=55*x^6+38*x^5+44*x^4+17*x^3+37*x^2+45*x+26', 'y^2=87*x^6+5*x^5+10*x^4+49*x^3+28*x^2+78*x+87', 'y^2=93*x^6+12*x^5+27*x^4+92*x^3+71*x^2+33*x+74', 'y^2=26*x^6+48*x^5+10*x^4+14*x^3+24*x^2+42*x+83', 'y^2=60*x^6+80*x^5+55*x^4+71*x^3+14*x^2+52*x+84', 'y^2=24*x^6+55*x^5+37*x^4+53*x^3+37*x^2+55*x+24'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.4.1'], 'geometric_splitting_field': '2.0.4.1', 'geometric_splitting_polynomials': [[1, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 118, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 118, 'label': '2.97.aq_jy', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.4.1'], 'p': 97, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -16, 258, -1552, 9409], 'poly_str': '1 -16 258 -1552 9409 ', 'primitive_models': [], 'q': 97, 'real_poly': [1, -16, 64], 'simple_distinct': ['1.97.ai'], 'simple_factors': ['1.97.aiA', '1.97.aiB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.4.1', 'splitting_polynomials': [[1, 0, 1]], 'twist_count': 16, 'twists': [['2.97.a_fa', '2.9409.ka_cavu', 2], ['2.97.q_jy', '2.9409.ka_cavu', 2], ['2.97.i_abh', '2.912673.fjs_lfmsg', 3], ['2.97.abk_ty', '2.88529281.fro_pfnewc', 4], ['2.97.aba_na', '2.88529281.fro_pfnewc', 4], ['2.97.ak_by', '2.88529281.fro_pfnewc', 4], ['2.97.a_afa', '2.88529281.fro_pfnewc', 4], ['2.97.k_by', '2.88529281.fro_pfnewc', 4], ['2.97.ba_na', '2.88529281.fro_pfnewc', 4], ['2.97.bk_ty', '2.88529281.fro_pfnewc', 4], ['2.97.ai_abh', '2.832972004929.aglooa_sjjxgaaty', 6], ['2.97.a_afo', '2.7837433594376961.bdevecq_mlznbkelqgos', 8], ['2.97.a_fo', '2.7837433594376961.bdevecq_mlznbkelqgos', 8], ['2.97.as_it', '2.693842360995438000295041.aevchnjmme_blpuxxpraijymzitkg', 12], ['2.97.s_it', '2.693842360995438000295041.aevchnjmme_blpuxxpraijymzitkg', 12]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.97.aq_jy', 'extension_degree': 1, 'extension_label': '1.97.ai', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.4.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.ai', 'galois_group': '2T1', 'places': [['75', '1'], ['22', '1']]}