Properties

Label 4-9702e2-1.1-c1e2-0-16
Degree $4$
Conductor $94128804$
Sign $1$
Analytic cond. $6001.73$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 2·11-s + 5·16-s + 4·22-s + 4·23-s − 8·25-s + 12·29-s + 6·32-s − 4·37-s + 8·43-s + 6·44-s + 8·46-s − 16·50-s + 24·53-s + 24·58-s + 7·64-s − 4·67-s + 20·71-s − 8·74-s − 16·79-s + 16·86-s + 8·88-s + 12·92-s − 24·100-s + 48·106-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s + 0.603·11-s + 5/4·16-s + 0.852·22-s + 0.834·23-s − 8/5·25-s + 2.22·29-s + 1.06·32-s − 0.657·37-s + 1.21·43-s + 0.904·44-s + 1.17·46-s − 2.26·50-s + 3.29·53-s + 3.15·58-s + 7/8·64-s − 0.488·67-s + 2.37·71-s − 0.929·74-s − 1.80·79-s + 1.72·86-s + 0.852·88-s + 1.25·92-s − 2.39·100-s + 4.66·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(94128804\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(6001.73\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 94128804,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(12.53233633\)
\(L(\frac12)\) \(\approx\) \(12.53233633\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 100 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52439934963764878974639506515, −7.39197473456050186700376648207, −7.05320983189886319611053331847, −6.90665375595235005573157433849, −6.22766429434383699223659453906, −6.16945730938830495618789705776, −5.68329620190205009304303433332, −5.63771500837814560750558809974, −4.89129234534473132451797989846, −4.79835299851017484138206132012, −4.35806641354321319274469481185, −4.12104537381210029049728139367, −3.50982926698003481113230121096, −3.44978499480081786200908564789, −2.96492979434940412659366783048, −2.32839567824895550317970906870, −2.22234088658059879164505439615, −1.71120259922571551647729693970, −0.838545002784852569998979181643, −0.791852201091381288167504403472, 0.791852201091381288167504403472, 0.838545002784852569998979181643, 1.71120259922571551647729693970, 2.22234088658059879164505439615, 2.32839567824895550317970906870, 2.96492979434940412659366783048, 3.44978499480081786200908564789, 3.50982926698003481113230121096, 4.12104537381210029049728139367, 4.35806641354321319274469481185, 4.79835299851017484138206132012, 4.89129234534473132451797989846, 5.63771500837814560750558809974, 5.68329620190205009304303433332, 6.16945730938830495618789705776, 6.22766429434383699223659453906, 6.90665375595235005573157433849, 7.05320983189886319611053331847, 7.39197473456050186700376648207, 7.52439934963764878974639506515

Graph of the $Z$-function along the critical line