Properties

Label 2.5.a_i
Base field $\F_{5}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $1 + 8 x^{2} + 25 x^{4}$
Frobenius angles:  $\pm0.397583617650$, $\pm0.602416382350$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\zeta_{8})\)
Galois group:  $C_2^2$
Jacobians:  $1$
Isomorphism classes:  3
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $34$ $1156$ $15538$ $374544$ $9759394$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $42$ $126$ $598$ $3126$ $15450$ $78126$ $392734$ $1953126$ $9753162$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\).
Endomorphism algebra over $\overline{\F}_{5}$
The base change of $A$ to $\F_{5^{2}}$ is 1.25.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.a_ai$4$2.625.abc_cdq
2.5.ai_ba$8$(not in LMFDB)
2.5.ag_s$8$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.a_ai$4$2.625.abc_cdq
2.5.ai_ba$8$(not in LMFDB)
2.5.ag_s$8$(not in LMFDB)
2.5.ae_o$8$(not in LMFDB)
2.5.ac_c$8$(not in LMFDB)
2.5.a_ag$8$(not in LMFDB)
2.5.a_g$8$(not in LMFDB)
2.5.c_c$8$(not in LMFDB)
2.5.e_o$8$(not in LMFDB)
2.5.g_s$8$(not in LMFDB)
2.5.i_ba$8$(not in LMFDB)
2.5.ae_l$24$(not in LMFDB)
2.5.ac_ab$24$(not in LMFDB)
2.5.c_ab$24$(not in LMFDB)
2.5.e_l$24$(not in LMFDB)