Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 54 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.189702307685$, $\pm0.810297692315$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-23})\) |
Galois group: | $C_2^2$ |
Jacobians: | $210$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5276$ | $27836176$ | $151334932124$ | $806899927008256$ | $4297625825772495836$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5222$ | $389018$ | $28413726$ | $2073071594$ | $151335637958$ | $11047398519098$ | $806460085609918$ | $58871586708267914$ | $4297625821841434022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=13 x^6+72 x^5+24 x^4+4 x^3+22 x^2+24 x+6$
- $y^2=52 x^6+x^5+52 x^4+18 x^3+25 x^2+62 x+8$
- $y^2=31 x^6+15 x^5+60 x^4+61 x^3+19 x^2+10 x+13$
- $y^2=9 x^6+2 x^5+8 x^4+13 x^3+22 x^2+50 x+65$
- $y^2=25 x^6+39 x^5+21 x^4+56 x^3+2 x^2+52 x+53$
- $y^2=47 x^6+40 x^5+61 x^4+45 x^3+67 x^2+65 x+19$
- $y^2=16 x^6+54 x^5+13 x^4+6 x^3+43 x^2+33 x+22$
- $y^2=69 x^6+49 x^5+38 x^4+16 x^3+45 x^2+9 x+65$
- $y^2=14 x^6+9 x^5+42 x^4+35 x^3+61 x^2+35 x+25$
- $y^2=37 x^6+47 x^5+39 x^4+15 x^3+72 x^2+55 x+42$
- $y^2=60 x^6+30 x^5+61 x^4+55 x^3+56 x^2+45 x+26$
- $y^2=8 x^6+4 x^5+13 x^4+56 x^3+61 x^2+6 x+57$
- $y^2=71 x^6+16 x^5+59 x^4+10 x^3+45 x^2+53 x+66$
- $y^2=63 x^6+7 x^5+3 x^4+50 x^3+6 x^2+46 x+38$
- $y^2=11 x^6+15 x^5+23 x^4+43 x^3+56 x^2+63 x+26$
- $y^2=55 x^6+2 x^5+42 x^4+69 x^3+61 x^2+23 x+57$
- $y^2=70 x^6+31 x^5+22 x^4+58 x^3+4 x^2+66 x+51$
- $y^2=58 x^6+9 x^5+37 x^4+71 x^3+20 x^2+38 x+36$
- $y^2=65 x^6+66 x^5+32 x^4+23 x^3+62 x^2+29 x+7$
- $y^2=33 x^6+38 x^5+14 x^4+42 x^3+18 x^2+72 x+35$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-23})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.acc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-46}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.a_cc | $4$ | (not in LMFDB) |
2.73.au_hs | $8$ | (not in LMFDB) |
2.73.u_hs | $8$ | (not in LMFDB) |