L(s) = 1 | + 2·2-s + 2·4-s + 8·11-s − 4·13-s − 4·16-s + 16·22-s + 12·23-s − 9·25-s − 8·26-s − 8·32-s − 6·37-s + 16·44-s + 24·46-s − 18·47-s + 49-s − 18·50-s − 8·52-s + 30·59-s + 8·61-s − 8·64-s + 24·71-s + 12·73-s − 12·74-s + 18·83-s + 24·92-s − 36·94-s + 24·97-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 2.41·11-s − 1.10·13-s − 16-s + 3.41·22-s + 2.50·23-s − 9/5·25-s − 1.56·26-s − 1.41·32-s − 0.986·37-s + 2.41·44-s + 3.53·46-s − 2.62·47-s + 1/7·49-s − 2.54·50-s − 1.10·52-s + 3.90·59-s + 1.02·61-s − 64-s + 2.84·71-s + 1.40·73-s − 1.39·74-s + 1.97·83-s + 2.50·92-s − 3.71·94-s + 2.43·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.442583775\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.442583775\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.650153087392553143775802165667, −7.88452133072696678604809936942, −7.25251494070528755481669441144, −6.75587037635177377501803178294, −6.65813577807847277238815424142, −6.25471251304940803802164013919, −5.40801773340443895405634653905, −5.05971017349345746635432394949, −4.86590526026148497681960970818, −3.90517995805379232478125425669, −3.76204991759879263596774310983, −3.37423655942682476559491319761, −2.42236155159716987191201970387, −1.94425866003935808730361221120, −0.895372083176175841154288549329,
0.895372083176175841154288549329, 1.94425866003935808730361221120, 2.42236155159716987191201970387, 3.37423655942682476559491319761, 3.76204991759879263596774310983, 3.90517995805379232478125425669, 4.86590526026148497681960970818, 5.05971017349345746635432394949, 5.40801773340443895405634653905, 6.25471251304940803802164013919, 6.65813577807847277238815424142, 6.75587037635177377501803178294, 7.25251494070528755481669441144, 7.88452133072696678604809936942, 8.650153087392553143775802165667