Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 97 x^{2} )^{2}$ |
| $1 - 24 x + 338 x^{2} - 2328 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.291487575149$, $\pm0.291487575149$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $69$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7396$ | $89491600$ | $836196855844$ | $7840323279360000$ | $73742837059284181156$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $9510$ | $916202$ | $88561918$ | $8587389674$ | $832969432230$ | $80798248812362$ | $7837433415939838$ | $760231059972897674$ | $73742412722621216550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 69 curves (of which all are hyperelliptic):
- $y^2=10 x^6+x^5+70 x^4+45 x^3+70 x^2+x+10$
- $y^2=66 x^6+32 x^5+7 x^4+16 x^3+14 x^2+29 x+20$
- $y^2=49 x^6+56 x^5+30 x^4+55 x^3+30 x^2+10 x+60$
- $y^2=15 x^6+49 x^5+42 x^4+38 x^3+17 x^2+11 x+90$
- $y^2=29 x^6+50 x^5+14 x^4+89 x^3+90 x^2+55 x+46$
- $y^2=52 x^6+53 x^4+82 x^3+44 x^2+45$
- $y^2=85 x^6+72 x^5+63 x^4+94 x^3+x^2+86$
- $y^2=75 x^6+45 x^5+49 x^4+59 x^3+44 x^2+56 x+33$
- $y^2=76 x^6+67 x^5+83 x^4+73 x^3+18 x^2+20 x+51$
- $y^2=16 x^6+54 x^5+48 x^4+48 x^3+86 x^2+76 x+55$
- $y^2=86 x^6+61 x^5+4 x^4+62 x^3+44 x^2+17 x+2$
- $y^2=60 x^6+24 x^5+48 x^4+19 x^3+48 x^2+24 x+60$
- $y^2=61 x^6+60 x^5+33 x^4+79 x^3+66 x^2+46 x+3$
- $y^2=95 x^6+2 x^5+26 x^4+45 x^3+x^2+71 x+15$
- $y^2=43 x^6+66 x^5+96 x^4+64 x^3+75 x^2+31 x+24$
- $y^2=45 x^6+87 x^5+15 x^4+94 x^3+55 x^2+38 x+52$
- $y^2=80 x^6+25 x^5+92 x^4+69 x^3+49 x^2+87 x+95$
- $y^2=4 x^6+60 x^5+25 x^4+80 x^3+25 x^2+60 x+4$
- $y^2=56 x^6+35 x^5+89 x^4+68 x^3+72 x^2+79 x+75$
- $y^2=37 x^6+2 x^5+38 x^4+80 x^3+38 x^2+2 x+37$
- and 49 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-61}) \)$)$ |
Base change
This is a primitive isogeny class.