# Stored data for abelian variety isogeny class 2.97.ay_na, downloaded from the LMFDB on 27 October 2025. {"abvar_count": 7396, "abvar_counts": [7396, 89491600, 836196855844, 7840323279360000, 73742837059284181156, 693840218011681557216400, 6528359892874979530948076644, 61425363947779483959409090560000, 577951263545278259966790048209250916, 5437943431710440018911268527028653690000], "abvar_counts_str": "7396 89491600 836196855844 7840323279360000 73742837059284181156 693840218011681557216400 6528359892874979530948076644 61425363947779483959409090560000 577951263545278259966790048209250916 5437943431710440018911268527028653690000 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.291487575149482, 0.291487575149482], "center_dim": 2, "curve_count": 74, "curve_counts": [74, 9510, 916202, 88561918, 8587389674, 832969432230, 80798248812362, 7837433415939838, 760231059972897674, 73742412722621216550], "curve_counts_str": "74 9510 916202 88561918 8587389674 832969432230 80798248812362 7837433415939838 760231059972897674 73742412722621216550 ", "curves": ["y^2=10*x^6+x^5+70*x^4+45*x^3+70*x^2+x+10", "y^2=66*x^6+32*x^5+7*x^4+16*x^3+14*x^2+29*x+20", "y^2=49*x^6+56*x^5+30*x^4+55*x^3+30*x^2+10*x+60", "y^2=15*x^6+49*x^5+42*x^4+38*x^3+17*x^2+11*x+90", "y^2=29*x^6+50*x^5+14*x^4+89*x^3+90*x^2+55*x+46", "y^2=52*x^6+53*x^4+82*x^3+44*x^2+45", "y^2=85*x^6+72*x^5+63*x^4+94*x^3+x^2+86", "y^2=75*x^6+45*x^5+49*x^4+59*x^3+44*x^2+56*x+33", "y^2=76*x^6+67*x^5+83*x^4+73*x^3+18*x^2+20*x+51", "y^2=16*x^6+54*x^5+48*x^4+48*x^3+86*x^2+76*x+55", "y^2=86*x^6+61*x^5+4*x^4+62*x^3+44*x^2+17*x+2", "y^2=60*x^6+24*x^5+48*x^4+19*x^3+48*x^2+24*x+60", "y^2=61*x^6+60*x^5+33*x^4+79*x^3+66*x^2+46*x+3", "y^2=95*x^6+2*x^5+26*x^4+45*x^3+x^2+71*x+15", "y^2=43*x^6+66*x^5+96*x^4+64*x^3+75*x^2+31*x+24", "y^2=45*x^6+87*x^5+15*x^4+94*x^3+55*x^2+38*x+52", "y^2=80*x^6+25*x^5+92*x^4+69*x^3+49*x^2+87*x+95", "y^2=4*x^6+60*x^5+25*x^4+80*x^3+25*x^2+60*x+4", "y^2=56*x^6+35*x^5+89*x^4+68*x^3+72*x^2+79*x+75", "y^2=37*x^6+2*x^5+38*x^4+80*x^3+38*x^2+2*x+37", "y^2=33*x^6+95*x^5+35*x^4+72*x^3+13*x^2+30*x+23", "y^2=12*x^6+74*x^5+71*x^4+34*x^3+71*x^2+74*x+12", "y^2=92*x^6+17*x^5+60*x^4+56*x^3+30*x^2+37*x+77", "y^2=37*x^6+95*x^5+23*x^4+41*x^3+57*x^2+86*x+13", "y^2=34*x^6+34*x^5+82*x^4+41*x^3+12*x^2+51*x+49", "y^2=30*x^6+47*x^5+89*x^4+89*x^3+89*x^2+47*x+30", "y^2=50*x^6+4*x^5+82*x^4+7*x^3+82*x^2+4*x+50", "y^2=83*x^6+95*x^5+96*x^4+47*x^3+9*x^2+24*x+90", "y^2=60*x^6+46*x^5+51*x^4+87*x^3+51*x^2+46*x+60", "y^2=77*x^6+62*x^5+20*x^4+32*x^3+45*x^2+75*x+68", "y^2=66*x^6+69*x^5+18*x^4+23*x^3+81*x^2+15*x+73", "y^2=21*x^6+9*x^5+20*x^4+44*x^3+20*x^2+9*x+21", "y^2=87*x^6+79*x^5+94*x^4+25*x^3+24*x^2+74*x+16", "y^2=45*x^6+6*x^5+39*x^4+96*x^3+30*x^2+84*x+88", "y^2=42*x^6+80*x^5+86*x^4+8*x^3+16*x^2+45*x+45", "y^2=46*x^6+75*x^5+15*x^4+89*x^3+75*x^2+28*x+43", "y^2=4*x^6+19*x^5+12*x^4+45*x^3+12*x^2+19*x+4", "y^2=88*x^6+33*x^5+30*x^4+94*x^3+39*x^2+34*x+59", "y^2=23*x^6+22*x^5+24*x^4+45*x^3+23*x^2+61*x+87", "y^2=37*x^6+21*x^5+32*x^4+x^3+32*x^2+21*x+37", "y^2=90*x^6+8*x^5+23*x^4+49*x^3+30*x^2+95*x+37", "y^2=89*x^6+37*x^5+88*x^4+70*x^3+88*x^2+37*x+89", "y^2=92*x^6+4*x^5+89*x^4+40*x^3+76*x^2+x+43", "y^2=19*x^6+37*x^5+51*x^4+78*x^3+41*x^2+53*x+92", "y^2=85*x^6+3*x^4+3*x^2+85", "y^2=27*x^6+67*x^5+96*x^4+60*x^3+89*x^2+62*x+84", "y^2=30*x^6+84*x^5+31*x^4+x^3+11*x^2+67*x+78", "y^2=37*x^6+80*x^5+48*x^4+57*x^3+41*x^2+48*x+20", "y^2=38*x^6+24*x^5+15*x^4+54*x^3+7*x^2+88*x+37", "y^2=90*x^6+44*x^5+37*x^4+11*x^3+93*x^2+23*x+90", "y^2=10*x^6+52*x^5+67*x^4+57*x^3+7*x^2+80*x+76", "y^2=60*x^6+73*x^5+51*x^4+38*x^3+33*x^2+96*x", "y^2=60*x^6+77*x^5+22*x^4+62*x^3+22*x^2+77*x+60", "y^2=54*x^6+86*x^5+34*x^4+2*x^3+34*x^2+86*x+54", "y^2=52*x^6+71*x^5+25*x^4+42*x^3+25*x^2+71*x+52", "y^2=74*x^6+38*x^5+86*x^4+66*x^3+15*x^2+33*x+18", "y^2=x^6+7*x^5+13*x^4+77*x^3+13*x^2+7*x+1", "y^2=42*x^6+14*x^5+32*x^4+51*x^3+32*x^2+14*x+42", "y^2=83*x^6+83*x^5+86*x^4+14*x^3+48*x^2+81*x+69", "y^2=95*x^6+50*x^5+23*x^4+19*x^3+23*x^2+50*x+95", "y^2=87*x^6+41*x^5+12*x^4+79*x^3+71*x^2+29*x+37", "y^2=52*x^6+60*x^5+14*x^4+58*x^3+56*x^2+87*x+30", "y^2=24*x^6+18*x^5+74*x^4+71*x^3+21*x^2+45*x+26", "y^2=56*x^6+75*x^5+33*x^4+2*x^3+44*x^2+33*x", "y^2=63*x^6+51*x^5+47*x^4+12*x^3+77*x^2+77*x+21", "y^2=55*x^6+56*x^4+56*x^2+55", "y^2=35*x^6+59*x^4+59*x^2+35", "y^2=20*x^6+89*x^5+63*x^4+75*x^3+9*x^2+94*x+23", "y^2=59*x^6+86*x^5+47*x^4+19*x^3+16*x^2+65*x+51"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.244.1"], "geometric_splitting_field": "2.0.244.1", "geometric_splitting_polynomials": [[61, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 69, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 69, "label": "2.97.ay_na", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.244.1"], "p": 97, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -24, 338, -2328, 9409], "poly_str": "1 -24 338 -2328 9409 ", "primitive_models": [], "q": 97, "real_poly": [1, -24, 144], "simple_distinct": ["1.97.am"], "simple_factors": ["1.97.amA", "1.97.amB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.244.1", "splitting_polynomials": [[61, 0, 1]], "twist_count": 6, "twists": [["2.97.a_by", "2.9409.dw_bfny", 2], ["2.97.y_na", "2.9409.dw_bfny", 2], ["2.97.m_bv", "2.912673.ffs_kuxig", 3], ["2.97.a_aby", "2.88529281.bwhg_blidyao", 4], ["2.97.am_bv", "2.832972004929.afqjua_pxlivamty", 6]]}