-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 7396, 'abvar_counts': [7396, 89491600, 836196855844, 7840323279360000, 73742837059284181156, 693840218011681557216400, 6528359892874979530948076644, 61425363947779483959409090560000, 577951263545278259966790048209250916, 5437943431710440018911268527028653690000], 'abvar_counts_str': '7396 89491600 836196855844 7840323279360000 73742837059284181156 693840218011681557216400 6528359892874979530948076644 61425363947779483959409090560000 577951263545278259966790048209250916 5437943431710440018911268527028653690000 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.291487575149482, 0.291487575149482], 'center_dim': 2, 'curve_count': 74, 'curve_counts': [74, 9510, 916202, 88561918, 8587389674, 832969432230, 80798248812362, 7837433415939838, 760231059972897674, 73742412722621216550], 'curve_counts_str': '74 9510 916202 88561918 8587389674 832969432230 80798248812362 7837433415939838 760231059972897674 73742412722621216550 ', 'curves': ['y^2=10*x^6+x^5+70*x^4+45*x^3+70*x^2+x+10', 'y^2=66*x^6+32*x^5+7*x^4+16*x^3+14*x^2+29*x+20', 'y^2=49*x^6+56*x^5+30*x^4+55*x^3+30*x^2+10*x+60', 'y^2=15*x^6+49*x^5+42*x^4+38*x^3+17*x^2+11*x+90', 'y^2=29*x^6+50*x^5+14*x^4+89*x^3+90*x^2+55*x+46', 'y^2=52*x^6+53*x^4+82*x^3+44*x^2+45', 'y^2=85*x^6+72*x^5+63*x^4+94*x^3+x^2+86', 'y^2=75*x^6+45*x^5+49*x^4+59*x^3+44*x^2+56*x+33', 'y^2=76*x^6+67*x^5+83*x^4+73*x^3+18*x^2+20*x+51', 'y^2=16*x^6+54*x^5+48*x^4+48*x^3+86*x^2+76*x+55', 'y^2=86*x^6+61*x^5+4*x^4+62*x^3+44*x^2+17*x+2', 'y^2=60*x^6+24*x^5+48*x^4+19*x^3+48*x^2+24*x+60', 'y^2=61*x^6+60*x^5+33*x^4+79*x^3+66*x^2+46*x+3', 'y^2=95*x^6+2*x^5+26*x^4+45*x^3+x^2+71*x+15', 'y^2=43*x^6+66*x^5+96*x^4+64*x^3+75*x^2+31*x+24', 'y^2=45*x^6+87*x^5+15*x^4+94*x^3+55*x^2+38*x+52', 'y^2=80*x^6+25*x^5+92*x^4+69*x^3+49*x^2+87*x+95', 'y^2=4*x^6+60*x^5+25*x^4+80*x^3+25*x^2+60*x+4', 'y^2=56*x^6+35*x^5+89*x^4+68*x^3+72*x^2+79*x+75', 'y^2=37*x^6+2*x^5+38*x^4+80*x^3+38*x^2+2*x+37', 'y^2=33*x^6+95*x^5+35*x^4+72*x^3+13*x^2+30*x+23', 'y^2=12*x^6+74*x^5+71*x^4+34*x^3+71*x^2+74*x+12', 'y^2=92*x^6+17*x^5+60*x^4+56*x^3+30*x^2+37*x+77', 'y^2=37*x^6+95*x^5+23*x^4+41*x^3+57*x^2+86*x+13', 'y^2=34*x^6+34*x^5+82*x^4+41*x^3+12*x^2+51*x+49', 'y^2=30*x^6+47*x^5+89*x^4+89*x^3+89*x^2+47*x+30', 'y^2=50*x^6+4*x^5+82*x^4+7*x^3+82*x^2+4*x+50', 'y^2=83*x^6+95*x^5+96*x^4+47*x^3+9*x^2+24*x+90', 'y^2=60*x^6+46*x^5+51*x^4+87*x^3+51*x^2+46*x+60', 'y^2=77*x^6+62*x^5+20*x^4+32*x^3+45*x^2+75*x+68', 'y^2=66*x^6+69*x^5+18*x^4+23*x^3+81*x^2+15*x+73', 'y^2=21*x^6+9*x^5+20*x^4+44*x^3+20*x^2+9*x+21', 'y^2=87*x^6+79*x^5+94*x^4+25*x^3+24*x^2+74*x+16', 'y^2=45*x^6+6*x^5+39*x^4+96*x^3+30*x^2+84*x+88', 'y^2=42*x^6+80*x^5+86*x^4+8*x^3+16*x^2+45*x+45', 'y^2=46*x^6+75*x^5+15*x^4+89*x^3+75*x^2+28*x+43', 'y^2=4*x^6+19*x^5+12*x^4+45*x^3+12*x^2+19*x+4', 'y^2=88*x^6+33*x^5+30*x^4+94*x^3+39*x^2+34*x+59', 'y^2=23*x^6+22*x^5+24*x^4+45*x^3+23*x^2+61*x+87', 'y^2=37*x^6+21*x^5+32*x^4+x^3+32*x^2+21*x+37', 'y^2=90*x^6+8*x^5+23*x^4+49*x^3+30*x^2+95*x+37', 'y^2=89*x^6+37*x^5+88*x^4+70*x^3+88*x^2+37*x+89', 'y^2=92*x^6+4*x^5+89*x^4+40*x^3+76*x^2+x+43', 'y^2=19*x^6+37*x^5+51*x^4+78*x^3+41*x^2+53*x+92', 'y^2=85*x^6+3*x^4+3*x^2+85', 'y^2=27*x^6+67*x^5+96*x^4+60*x^3+89*x^2+62*x+84', 'y^2=30*x^6+84*x^5+31*x^4+x^3+11*x^2+67*x+78', 'y^2=37*x^6+80*x^5+48*x^4+57*x^3+41*x^2+48*x+20', 'y^2=38*x^6+24*x^5+15*x^4+54*x^3+7*x^2+88*x+37', 'y^2=90*x^6+44*x^5+37*x^4+11*x^3+93*x^2+23*x+90', 'y^2=10*x^6+52*x^5+67*x^4+57*x^3+7*x^2+80*x+76', 'y^2=60*x^6+73*x^5+51*x^4+38*x^3+33*x^2+96*x', 'y^2=60*x^6+77*x^5+22*x^4+62*x^3+22*x^2+77*x+60', 'y^2=54*x^6+86*x^5+34*x^4+2*x^3+34*x^2+86*x+54', 'y^2=52*x^6+71*x^5+25*x^4+42*x^3+25*x^2+71*x+52', 'y^2=74*x^6+38*x^5+86*x^4+66*x^3+15*x^2+33*x+18', 'y^2=x^6+7*x^5+13*x^4+77*x^3+13*x^2+7*x+1', 'y^2=42*x^6+14*x^5+32*x^4+51*x^3+32*x^2+14*x+42', 'y^2=83*x^6+83*x^5+86*x^4+14*x^3+48*x^2+81*x+69', 'y^2=95*x^6+50*x^5+23*x^4+19*x^3+23*x^2+50*x+95', 'y^2=87*x^6+41*x^5+12*x^4+79*x^3+71*x^2+29*x+37', 'y^2=52*x^6+60*x^5+14*x^4+58*x^3+56*x^2+87*x+30', 'y^2=24*x^6+18*x^5+74*x^4+71*x^3+21*x^2+45*x+26', 'y^2=56*x^6+75*x^5+33*x^4+2*x^3+44*x^2+33*x', 'y^2=63*x^6+51*x^5+47*x^4+12*x^3+77*x^2+77*x+21', 'y^2=55*x^6+56*x^4+56*x^2+55', 'y^2=35*x^6+59*x^4+59*x^2+35', 'y^2=20*x^6+89*x^5+63*x^4+75*x^3+9*x^2+94*x+23', 'y^2=59*x^6+86*x^5+47*x^4+19*x^3+16*x^2+65*x+51'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.244.1'], 'geometric_splitting_field': '2.0.244.1', 'geometric_splitting_polynomials': [[61, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 69, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 69, 'label': '2.97.ay_na', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.244.1'], 'p': 97, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -24, 338, -2328, 9409], 'poly_str': '1 -24 338 -2328 9409 ', 'primitive_models': [], 'q': 97, 'real_poly': [1, -24, 144], 'simple_distinct': ['1.97.am'], 'simple_factors': ['1.97.amA', '1.97.amB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.244.1', 'splitting_polynomials': [[61, 0, 1]], 'twist_count': 6, 'twists': [['2.97.a_by', '2.9409.dw_bfny', 2], ['2.97.y_na', '2.9409.dw_bfny', 2], ['2.97.m_bv', '2.912673.ffs_kuxig', 3], ['2.97.a_aby', '2.88529281.bwhg_blidyao', 4], ['2.97.am_bv', '2.832972004929.afqjua_pxlivamty', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.97.ay_na', 'extension_degree': 1, 'extension_label': '1.97.am', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.244.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.am', 'galois_group': '2T1', 'places': [['91', '1'], ['6', '1']]}