Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 11 x + 43 x^{2} )( 1 + 11 x + 43 x^{2} )$ |
| $1 - 35 x^{2} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.183291501244$, $\pm0.816708498756$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $80$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $11$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1815$ | $3294225$ | $6321514320$ | $11705122625625$ | $21611482058851575$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $1780$ | $79508$ | $3423748$ | $147008444$ | $6321665590$ | $271818611108$ | $11688201721348$ | $502592611936844$ | $21611481804418900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=32 x^6+13 x^5+33 x^4+14 x^3+32 x^2+10 x+40$
- $y^2=10 x^6+39 x^5+13 x^4+42 x^3+10 x^2+30 x+34$
- $y^2=40 x^6+34 x^5+21 x^4+29 x^3+22 x^2+34 x+3$
- $y^2=6 x^6+16 x^5+2 x^4+33 x^3+10 x^2+32 x+29$
- $y^2=18 x^6+5 x^5+6 x^4+13 x^3+30 x^2+10 x+1$
- $y^2=39 x^6+22 x^5+24 x^4+20 x^3+12 x^2+33 x+5$
- $y^2=31 x^6+23 x^5+29 x^4+17 x^3+36 x^2+13 x+15$
- $y^2=23 x^6+15 x^5+20 x^4+x^3+32 x^2+41 x+38$
- $y^2=26 x^6+2 x^5+17 x^4+3 x^3+10 x^2+37 x+28$
- $y^2=36 x^6+21 x^5+39 x^4+14 x^3+42 x^2+4 x+14$
- $y^2=22 x^6+20 x^5+31 x^4+42 x^3+40 x^2+12 x+42$
- $y^2=29 x^6+30 x^5+11 x^4+10 x^3+11 x^2+30 x+29$
- $y^2=x^6+4 x^5+33 x^4+30 x^3+33 x^2+4 x+1$
- $y^2=16 x^6+14 x^5+26 x^4+7 x^3+15 x^2+17 x+32$
- $y^2=2 x^6+11 x^5+39 x^4+6 x^3+6 x^2+33 x+17$
- $y^2=6 x^6+33 x^5+31 x^4+18 x^3+18 x^2+13 x+8$
- $y^2=27 x^6+14 x^5+37 x^4+7 x^3+28 x^2+32 x+35$
- $y^2=38 x^6+42 x^5+25 x^4+21 x^3+41 x^2+10 x+19$
- $y^2=37 x^6+24 x^5+10 x^4+29 x^3+4 x^2+21 x+14$
- $y^2=25 x^6+29 x^5+30 x^4+x^3+12 x^2+20 x+42$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.al $\times$ 1.43.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{43^{2}}$ is 1.1849.abj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-51}) \)$)$ |
Base change
This is a primitive isogeny class.