Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 15 x + 59 x^{2} )^{2}$ |
| $1 - 30 x + 343 x^{2} - 1770 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.0692665268586$, $\pm0.0692665268586$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $1$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2025$ | $11390625$ | $41885715600$ | $146721740765625$ | $511081259355275625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $3268$ | $203940$ | $12108388$ | $714874650$ | $42180318358$ | $2488651184910$ | $146830445807428$ | $8662995959396220$ | $511116754927777348$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):
- $y^2=47 x^6+8 x^5+52 x^4+17 x^3+13 x^2+30 x+33$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.ap 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.