Properties

Label 2.59.abe_nf
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 15 x + 59 x^{2} )^{2}$
  $1 - 30 x + 343 x^{2} - 1770 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.0692665268586$, $\pm0.0692665268586$
Angle rank:  $1$ (numerical)
Jacobians:  $1$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2025$ $11390625$ $41885715600$ $146721740765625$ $511081259355275625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $30$ $3268$ $203940$ $12108388$ $714874650$ $42180318358$ $2488651184910$ $146830445807428$ $8662995959396220$ $511116754927777348$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ap 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_aed$2$(not in LMFDB)
2.59.be_nf$2$(not in LMFDB)
2.59.p_gk$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_aed$2$(not in LMFDB)
2.59.be_nf$2$(not in LMFDB)
2.59.p_gk$3$(not in LMFDB)
2.59.a_ed$4$(not in LMFDB)
2.59.ap_gk$6$(not in LMFDB)