L(s) = 1 | − 8·11-s + 8·17-s − 2·19-s + 6·25-s − 16·43-s − 5·49-s − 8·59-s + 22·67-s + 2·73-s − 16·83-s − 24·89-s + 10·97-s − 24·107-s − 24·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 25·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 2.41·11-s + 1.94·17-s − 0.458·19-s + 6/5·25-s − 2.43·43-s − 5/7·49-s − 1.04·59-s + 2.68·67-s + 0.234·73-s − 1.75·83-s − 2.54·89-s + 1.01·97-s − 2.32·107-s − 2.25·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.92·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.401866546043067452666777829857, −7.938743397969043584573887403119, −7.79497553082532979201942816895, −6.95550481778817521461633350929, −6.83361756772483196040188421834, −5.96792011154325891433457977771, −5.48459428248370426498378218555, −5.14803643650686365420219259306, −4.81675214534703865809257184279, −3.99250331289836498435902686175, −3.09788365205681643264055516753, −3.04682102297854825793595716610, −2.20593526227161583330529036984, −1.27143319370400675106679280463, 0,
1.27143319370400675106679280463, 2.20593526227161583330529036984, 3.04682102297854825793595716610, 3.09788365205681643264055516753, 3.99250331289836498435902686175, 4.81675214534703865809257184279, 5.14803643650686365420219259306, 5.48459428248370426498378218555, 5.96792011154325891433457977771, 6.83361756772483196040188421834, 6.95550481778817521461633350929, 7.79497553082532979201942816895, 7.938743397969043584573887403119, 8.401866546043067452666777829857