Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 73 x^{2} )^{2}$ |
$1 - 2 x + 147 x^{2} - 146 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.481361674224$, $\pm0.481361674224$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5329$ | $29975625$ | $151504663696$ | $805871447015625$ | $4297516869751267969$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5620$ | $389454$ | $28377508$ | $2073019032$ | $151335687310$ | $11047403817144$ | $806459990537668$ | $58871586220154142$ | $4297625836614462100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=18 x^6+64 x^5+24 x^4+46 x^3+3 x^2+x+18$
- $y^2=12 x^6+11 x^5+6 x^4+48 x^3+13 x^2+38 x+30$
- $y^2=59 x^6+33 x^5+14 x^4+57 x^3+20 x^2+45 x+59$
- $y^2=15 x^6+26 x^5+17 x^4+71 x^3+49 x^2+31 x+9$
- $y^2=28 x^6+64 x^5+50 x^4+31 x^3+70 x^2+3 x+24$
- $y^2=25 x^6+59 x^5+46 x^4+59 x^3+x^2+14 x+55$
- $y^2=2 x^6+61 x^5+42 x^4+35 x^3+71 x^2+34 x+46$
- $y^2=24 x^6+71 x^5+7 x^4+48 x^3+17 x^2+15 x+14$
- $y^2=32 x^6+53 x^5+29 x^4+22 x^3+69 x^2+4 x+51$
- $y^2=x^6+63 x^5+31 x^4+72 x^3+31 x^2+31$
- $y^2=2 x^6+12 x^5+20 x^4+38 x^3+56 x^2+33 x+29$
- $y^2=x^6+28 x^5+17 x^4+26 x^3+43 x^2+68 x+27$
- $y^2=66 x^6+64 x^5+67 x^4+43 x^3+53 x^2+21 x+20$
- $y^2=64 x^6+31 x^5+14 x^4+42 x^3+10 x^2+62 x+8$
- $y^2=45 x^6+67 x^5+11 x^4+28 x^3+51 x^2+49 x+5$
- $y^2=49 x^6+12 x^5+56 x^4+47 x^3+42 x^2+62 x+43$
- $y^2=48 x^6+52 x^5+53 x^4+9 x^3+2 x^2+63 x+13$
- $y^2=36 x^6+6 x^5+22 x^4+45 x^3+7 x^2+54 x+50$
- $y^2=60 x^6+32 x^5+53 x^4+29 x^3+3 x^2+60 x+35$
- $y^2=61 x^6+9 x^5+7 x^4+44 x^3+10 x^2+72 x+61$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ab 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-291}) \)$)$ |
Base change
This is a primitive isogeny class.