Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 53 x^{2} )( 1 + 8 x + 53 x^{2} )$ |
$1 + 42 x^{2} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.314840234458$, $\pm0.685159765542$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $48$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2852$ | $8133904$ | $22164081284$ | $62320540880896$ | $174887471112639332$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2894$ | $148878$ | $7898190$ | $418195494$ | $22163801438$ | $1174711139838$ | $62259692266654$ | $3299763591802134$ | $174887471859765614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=47 x^6+33 x^5+28 x^4+18 x^3+9 x^2+46 x+36$
- $y^2=3 x^6+41 x^5+44 x^4+34 x^3+22 x^2+50 x+7$
- $y^2=44 x^6+25 x^5+50 x^4+8 x^3+26 x^2+x+2$
- $y^2=35 x^6+50 x^5+47 x^4+16 x^3+52 x^2+2 x+4$
- $y^2=26 x^6+51 x^5+10 x^4+15 x^2+22 x+48$
- $y^2=52 x^6+49 x^5+20 x^4+30 x^2+44 x+43$
- $y^2=20 x^6+24 x^5+16 x^4+44 x^3+35 x^2+37 x+15$
- $y^2=6 x^6+49 x^5+34 x^4+32 x^3+12 x^2+25 x+33$
- $y^2=12 x^6+45 x^5+15 x^4+11 x^3+24 x^2+50 x+13$
- $y^2=50 x^6+6 x^5+50 x^4+20 x^3+6 x^2+24 x+24$
- $y^2=45 x^6+47 x^5+13 x^4+46 x^3+12 x^2+9 x+7$
- $y^2=47 x^6+30 x^5+41 x^4+48 x^3+17 x^2+5 x+50$
- $y^2=21 x^6+14 x^5+39 x^4+11 x^3+20 x^2+29 x+34$
- $y^2=38 x^6+31 x^5+x^4+9 x^3+5 x^2+33 x+33$
- $y^2=15 x^6+46 x^5+45 x^4+50 x^3+x^2+51 x+18$
- $y^2=6 x^6+40 x^5+19 x^4+11 x^3+11 x^2+46 x+45$
- $y^2=20 x^6+x^5+22 x^4+6 x^3+25 x^2+6 x+40$
- $y^2=32 x^6+14 x^4+28 x^2+44$
- $y^2=23 x^6+51 x^4+49 x^2+25$
- $y^2=6 x^6+3 x^5+49 x^4+37 x^3+33 x^2+22 x+8$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ai $\times$ 1.53.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.bq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-37}) \)$)$ |
Base change
This is a primitive isogeny class.