-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2852, 'abvar_counts': [2852, 8133904, 22164081284, 62320540880896, 174887471112639332, 491246499163759088656, 1379946262056472463241668, 3876269165628547767982424064, 10888439761782910510746919080356, 30585627552174256829906363113406224], 'abvar_counts_str': '2852 8133904 22164081284 62320540880896 174887471112639332 491246499163759088656 1379946262056472463241668 3876269165628547767982424064 10888439761782910510746919080356 30585627552174256829906363113406224 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.314840234458388, 0.685159765541612], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 54, 'curve_counts': [54, 2894, 148878, 7898190, 418195494, 22163801438, 1174711139838, 62259692266654, 3299763591802134, 174887471859765614], 'curve_counts_str': '54 2894 148878 7898190 418195494 22163801438 1174711139838 62259692266654 3299763591802134 174887471859765614 ', 'curves': ['y^2=47*x^6+33*x^5+28*x^4+18*x^3+9*x^2+46*x+36', 'y^2=3*x^6+41*x^5+44*x^4+34*x^3+22*x^2+50*x+7', 'y^2=44*x^6+25*x^5+50*x^4+8*x^3+26*x^2+x+2', 'y^2=35*x^6+50*x^5+47*x^4+16*x^3+52*x^2+2*x+4', 'y^2=26*x^6+51*x^5+10*x^4+15*x^2+22*x+48', 'y^2=52*x^6+49*x^5+20*x^4+30*x^2+44*x+43', 'y^2=20*x^6+24*x^5+16*x^4+44*x^3+35*x^2+37*x+15', 'y^2=6*x^6+49*x^5+34*x^4+32*x^3+12*x^2+25*x+33', 'y^2=12*x^6+45*x^5+15*x^4+11*x^3+24*x^2+50*x+13', 'y^2=50*x^6+6*x^5+50*x^4+20*x^3+6*x^2+24*x+24', 'y^2=45*x^6+47*x^5+13*x^4+46*x^3+12*x^2+9*x+7', 'y^2=47*x^6+30*x^5+41*x^4+48*x^3+17*x^2+5*x+50', 'y^2=21*x^6+14*x^5+39*x^4+11*x^3+20*x^2+29*x+34', 'y^2=38*x^6+31*x^5+x^4+9*x^3+5*x^2+33*x+33', 'y^2=15*x^6+46*x^5+45*x^4+50*x^3+x^2+51*x+18', 'y^2=6*x^6+40*x^5+19*x^4+11*x^3+11*x^2+46*x+45', 'y^2=20*x^6+x^5+22*x^4+6*x^3+25*x^2+6*x+40', 'y^2=32*x^6+14*x^4+28*x^2+44', 'y^2=23*x^6+51*x^4+49*x^2+25', 'y^2=6*x^6+3*x^5+49*x^4+37*x^3+33*x^2+22*x+8', 'y^2=24*x^6+51*x^5+47*x^4+25*x^3+37*x^2+21*x+5', 'y^2=48*x^6+49*x^5+41*x^4+50*x^3+21*x^2+42*x+10', 'y^2=19*x^6+11*x^5+17*x^4+37*x^3+26*x^2+36*x+37', 'y^2=40*x^6+9*x^5+15*x^4+26*x^3+38*x^2+20*x+13', 'y^2=50*x^6+8*x^5+20*x^4+44*x^3+30*x^2+47*x+10', 'y^2=47*x^6+16*x^5+40*x^4+35*x^3+7*x^2+41*x+20', 'y^2=18*x^6+26*x^5+44*x^4+49*x^3+17*x^2+45*x+39', 'y^2=36*x^6+52*x^5+35*x^4+45*x^3+34*x^2+37*x+25', 'y^2=29*x^6+51*x^5+22*x^4+7*x^3+46*x^2+39*x+39', 'y^2=37*x^6+8*x^5+15*x^4+4*x^3+6*x^2+44*x+23', 'y^2=16*x^6+6*x^5+25*x^4+17*x^3+27*x^2+36*x+21', 'y^2=28*x^6+14*x^5+49*x^4+49*x^3+24*x^2+46*x+14', 'y^2=29*x^6+13*x^5+36*x^4+x^3+31*x^2+49*x+11', 'y^2=5*x^6+26*x^5+19*x^4+2*x^3+9*x^2+45*x+22', 'y^2=45*x^6+32*x^5+43*x^4+40*x^3+19*x^2+18*x+43', 'y^2=5*x^5+6*x^4+9*x^3+2*x^2+46*x+38', 'y^2=16*x^6+18*x^5+9*x^4+42*x^3+25*x^2+5*x+13', 'y^2=46*x^6+45*x^5+37*x^4+4*x^3+45*x^2+19*x+52', 'y^2=39*x^6+37*x^5+21*x^4+8*x^3+37*x^2+38*x+51', 'y^2=4*x^6+42*x^5+24*x^4+45*x^3+26*x^2+25*x+3', 'y^2=36*x^6+38*x^5+46*x^4+44*x^3+12*x^2+5*x+1', 'y^2=8*x^6+21*x^5+12*x^4+12*x^3+38*x^2+51*x+15', 'y^2=16*x^6+42*x^5+24*x^4+24*x^3+23*x^2+49*x+30', 'y^2=43*x^6+20*x^5+23*x^4+33*x^3+24*x^2+30*x+19', 'y^2=33*x^6+40*x^5+46*x^4+13*x^3+48*x^2+7*x+38', 'y^2=2*x^6+47*x^5+40*x^4+18*x^3+28*x^2+37*x+3', 'y^2=3*x^6+25*x^5+34*x^4+49*x^3+27*x^2+10*x+35', 'y^2=35*x^6+26*x^5+32*x^4+45*x^3+50*x^2+29*x+10'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 9, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.148.1'], 'geometric_splitting_field': '2.0.148.1', 'geometric_splitting_polynomials': [[37, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 48, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 48, 'label': '2.53.a_bq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.148.1', '2.0.148.1'], 'p': 53, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 42, 0, 2809], 'poly_str': '1 0 42 0 2809 ', 'primitive_models': [], 'q': 53, 'real_poly': [1, 0, -64], 'simple_distinct': ['1.53.ai', '1.53.i'], 'simple_factors': ['1.53.aiA', '1.53.iA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,V-3'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.148.1', 'splitting_polynomials': [[37, 0, 1]], 'twist_count': 6, 'twists': [['2.53.aq_go', '2.2809.dg_kxy', 2], ['2.53.q_go', '2.2809.dg_kxy', 2], ['2.53.a_abq', '2.7890481.lkm_cpayzm', 4], ['2.53.ai_l', '2.22164361129.abfvyq_phagllko', 6], ['2.53.i_l', '2.22164361129.abfvyq_phagllko', 6]], 'weak_equivalence_count': 9, 'zfv_index': 256, 'zfv_index_factorization': [[2, 8]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 21904, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,V-3']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 46490
{'base_label': '2.53.a_bq', 'extension_degree': 1, 'extension_label': '1.53.ai', 'multiplicity': 1}
-
id: 46491
{'base_label': '2.53.a_bq', 'extension_degree': 1, 'extension_label': '1.53.i', 'multiplicity': 1}
-
id: 46492
{'base_label': '2.53.a_bq', 'extension_degree': 2, 'extension_label': '1.2809.bq', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.148.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.53.ai', 'galois_group': '2T1', 'places': [['49', '1'], ['4', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.148.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.53.i', 'galois_group': '2T1', 'places': [['4', '1'], ['49', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.148.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.2809.bq', 'galois_group': '2T1', 'places': [['49', '1'], ['4', '1']]}