# Stored data for abelian variety isogeny class 2.53.a_bq, downloaded from the LMFDB on 06 September 2025. {"abvar_count": 2852, "abvar_counts": [2852, 8133904, 22164081284, 62320540880896, 174887471112639332, 491246499163759088656, 1379946262056472463241668, 3876269165628547767982424064, 10888439761782910510746919080356, 30585627552174256829906363113406224], "abvar_counts_str": "2852 8133904 22164081284 62320540880896 174887471112639332 491246499163759088656 1379946262056472463241668 3876269165628547767982424064 10888439761782910510746919080356 30585627552174256829906363113406224 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.314840234458388, 0.685159765541612], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 54, "curve_counts": [54, 2894, 148878, 7898190, 418195494, 22163801438, 1174711139838, 62259692266654, 3299763591802134, 174887471859765614], "curve_counts_str": "54 2894 148878 7898190 418195494 22163801438 1174711139838 62259692266654 3299763591802134 174887471859765614 ", "curves": ["y^2=47*x^6+33*x^5+28*x^4+18*x^3+9*x^2+46*x+36", "y^2=3*x^6+41*x^5+44*x^4+34*x^3+22*x^2+50*x+7", "y^2=44*x^6+25*x^5+50*x^4+8*x^3+26*x^2+x+2", "y^2=35*x^6+50*x^5+47*x^4+16*x^3+52*x^2+2*x+4", "y^2=26*x^6+51*x^5+10*x^4+15*x^2+22*x+48", "y^2=52*x^6+49*x^5+20*x^4+30*x^2+44*x+43", "y^2=20*x^6+24*x^5+16*x^4+44*x^3+35*x^2+37*x+15", "y^2=6*x^6+49*x^5+34*x^4+32*x^3+12*x^2+25*x+33", "y^2=12*x^6+45*x^5+15*x^4+11*x^3+24*x^2+50*x+13", "y^2=50*x^6+6*x^5+50*x^4+20*x^3+6*x^2+24*x+24", "y^2=45*x^6+47*x^5+13*x^4+46*x^3+12*x^2+9*x+7", "y^2=47*x^6+30*x^5+41*x^4+48*x^3+17*x^2+5*x+50", "y^2=21*x^6+14*x^5+39*x^4+11*x^3+20*x^2+29*x+34", "y^2=38*x^6+31*x^5+x^4+9*x^3+5*x^2+33*x+33", "y^2=15*x^6+46*x^5+45*x^4+50*x^3+x^2+51*x+18", "y^2=6*x^6+40*x^5+19*x^4+11*x^3+11*x^2+46*x+45", "y^2=20*x^6+x^5+22*x^4+6*x^3+25*x^2+6*x+40", "y^2=32*x^6+14*x^4+28*x^2+44", "y^2=23*x^6+51*x^4+49*x^2+25", "y^2=6*x^6+3*x^5+49*x^4+37*x^3+33*x^2+22*x+8", "y^2=24*x^6+51*x^5+47*x^4+25*x^3+37*x^2+21*x+5", "y^2=48*x^6+49*x^5+41*x^4+50*x^3+21*x^2+42*x+10", "y^2=19*x^6+11*x^5+17*x^4+37*x^3+26*x^2+36*x+37", "y^2=40*x^6+9*x^5+15*x^4+26*x^3+38*x^2+20*x+13", "y^2=50*x^6+8*x^5+20*x^4+44*x^3+30*x^2+47*x+10", "y^2=47*x^6+16*x^5+40*x^4+35*x^3+7*x^2+41*x+20", "y^2=18*x^6+26*x^5+44*x^4+49*x^3+17*x^2+45*x+39", "y^2=36*x^6+52*x^5+35*x^4+45*x^3+34*x^2+37*x+25", "y^2=29*x^6+51*x^5+22*x^4+7*x^3+46*x^2+39*x+39", "y^2=37*x^6+8*x^5+15*x^4+4*x^3+6*x^2+44*x+23", "y^2=16*x^6+6*x^5+25*x^4+17*x^3+27*x^2+36*x+21", "y^2=28*x^6+14*x^5+49*x^4+49*x^3+24*x^2+46*x+14", "y^2=29*x^6+13*x^5+36*x^4+x^3+31*x^2+49*x+11", "y^2=5*x^6+26*x^5+19*x^4+2*x^3+9*x^2+45*x+22", "y^2=45*x^6+32*x^5+43*x^4+40*x^3+19*x^2+18*x+43", "y^2=5*x^5+6*x^4+9*x^3+2*x^2+46*x+38", "y^2=16*x^6+18*x^5+9*x^4+42*x^3+25*x^2+5*x+13", "y^2=46*x^6+45*x^5+37*x^4+4*x^3+45*x^2+19*x+52", "y^2=39*x^6+37*x^5+21*x^4+8*x^3+37*x^2+38*x+51", "y^2=4*x^6+42*x^5+24*x^4+45*x^3+26*x^2+25*x+3", "y^2=36*x^6+38*x^5+46*x^4+44*x^3+12*x^2+5*x+1", "y^2=8*x^6+21*x^5+12*x^4+12*x^3+38*x^2+51*x+15", "y^2=16*x^6+42*x^5+24*x^4+24*x^3+23*x^2+49*x+30", "y^2=43*x^6+20*x^5+23*x^4+33*x^3+24*x^2+30*x+19", "y^2=33*x^6+40*x^5+46*x^4+13*x^3+48*x^2+7*x+38", "y^2=2*x^6+47*x^5+40*x^4+18*x^3+28*x^2+37*x+3", "y^2=3*x^6+25*x^5+34*x^4+49*x^3+27*x^2+10*x+35", "y^2=35*x^6+26*x^5+32*x^4+45*x^3+50*x^2+29*x+10"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 9, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.148.1"], "geometric_splitting_field": "2.0.148.1", "geometric_splitting_polynomials": [[37, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 48, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 48, "label": "2.53.a_bq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.148.1", "2.0.148.1"], "p": 53, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, 42, 0, 2809], "poly_str": "1 0 42 0 2809 ", "primitive_models": [], "q": 53, "real_poly": [1, 0, -64], "simple_distinct": ["1.53.ai", "1.53.i"], "simple_factors": ["1.53.aiA", "1.53.iA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,V-3"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.148.1", "splitting_polynomials": [[37, 0, 1]], "twist_count": 6, "twists": [["2.53.aq_go", "2.2809.dg_kxy", 2], ["2.53.q_go", "2.2809.dg_kxy", 2], ["2.53.a_abq", "2.7890481.lkm_cpayzm", 4], ["2.53.ai_l", "2.22164361129.abfvyq_phagllko", 6], ["2.53.i_l", "2.22164361129.abfvyq_phagllko", 6]], "weak_equivalence_count": 9, "zfv_index": 256, "zfv_index_factorization": [[2, 8]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 21904, "zfv_singular_count": 2, "zfv_singular_primes": ["2,V-3"]}