Properties

Label 2.89.y_mk
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 + 12 x + 89 x^{2} )^{2}$
  $1 + 24 x + 322 x^{2} + 2136 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.719411653755$, $\pm0.719411653755$
Angle rank:  $1$ (numerical)
Jacobians:  $63$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10404$ $63297936$ $494903808036$ $3938432011997184$ $31181218851988634724$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $114$ $7990$ $702018$ $62771614$ $5583969714$ $496979753686$ $44231361329346$ $3936588625313854$ $350356403519534322$ $31181719948276146550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.m 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-53}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.ay_mk$2$(not in LMFDB)
2.89.a_bi$2$(not in LMFDB)
2.89.am_cd$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.ay_mk$2$(not in LMFDB)
2.89.a_bi$2$(not in LMFDB)
2.89.am_cd$3$(not in LMFDB)
2.89.a_abi$4$(not in LMFDB)
2.89.m_cd$6$(not in LMFDB)