Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 12 x + 89 x^{2} )^{2}$ |
$1 + 24 x + 322 x^{2} + 2136 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.719411653755$, $\pm0.719411653755$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $63$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10404$ | $63297936$ | $494903808036$ | $3938432011997184$ | $31181218851988634724$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $114$ | $7990$ | $702018$ | $62771614$ | $5583969714$ | $496979753686$ | $44231361329346$ | $3936588625313854$ | $350356403519534322$ | $31181719948276146550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):
- $y^2=53 x^6+4 x^5+29 x^4+70 x^3+61 x^2+25 x+73$
- $y^2=73 x^6+x^5+2 x^4+74 x^3+16 x^2+37 x+60$
- $y^2=77 x^6+62 x^5+25 x^4+6 x^3+50 x^2+70 x+82$
- $y^2=11 x^6+11 x^5+57 x^4+26 x^3+57 x^2+11 x+11$
- $y^2=85 x^6+53 x^5+2 x^4+26 x^3+87 x^2+28 x+50$
- $y^2=77 x^6+22 x^5+63 x^4+11 x^3+55 x^2+24 x+58$
- $y^2=79 x^6+56 x^5+80 x^4+54 x^3+54 x^2+10 x+80$
- $y^2=40 x^6+46 x^5+24 x^4+73 x^3+6 x^2+44 x+46$
- $y^2=81 x^6+10 x^5+14 x^4+26 x^3+37 x^2+17 x+74$
- $y^2=65 x^6+62 x^5+22 x^4+41 x^3+22 x^2+62 x+65$
- $y^2=78 x^6+47 x^5+51 x^4+29 x^3+51 x^2+47 x+78$
- $y^2=29 x^6+29 x^5+56 x^4+87 x^3+26 x^2+52 x+75$
- $y^2=34 x^6+61 x^5+39 x^4+46 x^3+16 x^2+83 x+47$
- $y^2=51 x^6+10 x^5+75 x^4+38 x^3+71 x^2+36 x+20$
- $y^2=47 x^6+66 x^5+84 x^4+59 x^3+37 x^2+71 x+51$
- $y^2=46 x^6+75 x^5+28 x^4+64 x^3+82 x^2+77 x+41$
- $y^2=73 x^6+78 x^5+8 x^4+61 x^3+45 x^2+55 x+2$
- $y^2=25 x^6+7 x^5+23 x^4+13 x^3+80 x^2+51 x+66$
- $y^2=13 x^6+77 x^5+71 x^4+56 x^3+51 x^2+32 x+49$
- $y^2=32 x^6+4 x^5+6 x^4+79 x^3+43 x^2+67 x+44$
- and 43 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.m 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-53}) \)$)$ |
Base change
This is a primitive isogeny class.