Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 79 x^{2} )( 1 + 5 x + 79 x^{2} )$ |
$1 + 133 x^{2} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.409243695363$, $\pm0.590756304637$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $164$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6375$ | $40640625$ | $243087318000$ | $1516703288765625$ | $9468276076730409375$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6508$ | $493040$ | $38939668$ | $3077056400$ | $243087180478$ | $19203908986160$ | $1517108911481188$ | $119851595982618320$ | $9468276070833971548$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 164 curves (of which all are hyperelliptic):
- $y^2=38 x^6+52 x^5+15 x^4+61 x^2+28 x+78$
- $y^2=35 x^6+77 x^5+45 x^4+25 x^2+5 x+76$
- $y^2=65 x^6+20 x^5+75 x^4+16 x^3+57 x^2+52 x+21$
- $y^2=37 x^6+60 x^5+67 x^4+48 x^3+13 x^2+77 x+63$
- $y^2=13 x^6+48 x^5+35 x^4+32 x^3+43 x^2+40 x+73$
- $y^2=39 x^6+65 x^5+26 x^4+17 x^3+50 x^2+41 x+61$
- $y^2=75 x^6+50 x^5+34 x^4+13 x^3+60 x^2+46 x+70$
- $y^2=67 x^6+71 x^5+23 x^4+39 x^3+22 x^2+59 x+52$
- $y^2=52 x^6+47 x^5+69 x^4+25 x^3+76 x^2+17 x+18$
- $y^2=77 x^6+62 x^5+49 x^4+75 x^3+70 x^2+51 x+54$
- $y^2=15 x^6+56 x^5+7 x^4+55 x^3+32 x^2+53 x+52$
- $y^2=21 x^6+48 x^5+x^4+66 x^3+2 x^2+34 x+10$
- $y^2=63 x^6+65 x^5+3 x^4+40 x^3+6 x^2+23 x+30$
- $y^2=62 x^6+65 x^5+15 x^4+10 x^3+73 x^2+42 x+27$
- $y^2=38 x^6+69 x^5+30 x^4+6 x^3+18 x^2+28 x+12$
- $y^2=64 x^6+14 x^5+9 x^4+49 x^3+15 x^2+20 x+20$
- $y^2=34 x^6+42 x^5+27 x^4+68 x^3+45 x^2+60 x+60$
- $y^2=46 x^6+62 x^5+69 x^4+47 x^3+9 x^2+57 x+29$
- $y^2=59 x^6+28 x^5+49 x^4+62 x^3+27 x^2+13 x+8$
- $y^2=18 x^6+39 x^5+55 x^4+28 x^3+13 x^2+53 x+46$
- and 144 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.af $\times$ 1.79.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.fd 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-291}) \)$)$ |
Base change
This is a primitive isogeny class.