| L(s) = 1 | − 2·2-s + 3·4-s − 6·7-s − 4·8-s + 5·9-s + 6·13-s + 12·14-s + 5·16-s − 10·18-s − 12·26-s − 18·28-s − 6·32-s + 15·36-s − 6·37-s − 6·47-s + 13·49-s + 18·52-s + 24·56-s − 16·61-s − 30·63-s + 7·64-s + 24·67-s − 20·72-s + 12·73-s + 12·74-s − 20·79-s + 16·81-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 2.26·7-s − 1.41·8-s + 5/3·9-s + 1.66·13-s + 3.20·14-s + 5/4·16-s − 2.35·18-s − 2.35·26-s − 3.40·28-s − 1.06·32-s + 5/2·36-s − 0.986·37-s − 0.875·47-s + 13/7·49-s + 2.49·52-s + 3.20·56-s − 2.04·61-s − 3.77·63-s + 7/8·64-s + 2.93·67-s − 2.35·72-s + 1.40·73-s + 1.39·74-s − 2.25·79-s + 16/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7571139293\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7571139293\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40579359910264910391798374226, −10.19309663544502108599700135739, −9.993688555409133294724844030653, −9.382608289109218655888987767139, −9.244139125722055831391721374611, −8.726277275654772402775989839184, −8.289418765404660343800427367972, −7.60815704598803955156863689976, −7.37227262827544519118519171246, −6.65967277115333027023738769657, −6.43008308137672900757969774338, −6.34249403667160232528714015235, −5.56859466857697651659723215691, −4.77996152384419800370966864288, −3.95306942499852943931287753441, −3.40462859029285778796014360296, −3.26775815526395431429032431597, −2.18130367835354612418786059287, −1.47953711797463536056081496378, −0.62604777101715275959992429842,
0.62604777101715275959992429842, 1.47953711797463536056081496378, 2.18130367835354612418786059287, 3.26775815526395431429032431597, 3.40462859029285778796014360296, 3.95306942499852943931287753441, 4.77996152384419800370966864288, 5.56859466857697651659723215691, 6.34249403667160232528714015235, 6.43008308137672900757969774338, 6.65967277115333027023738769657, 7.37227262827544519118519171246, 7.60815704598803955156863689976, 8.289418765404660343800427367972, 8.726277275654772402775989839184, 9.244139125722055831391721374611, 9.382608289109218655888987767139, 9.993688555409133294724844030653, 10.19309663544502108599700135739, 10.40579359910264910391798374226