Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 47 x^{2} )^{2}$ |
| $1 + 6 x + 103 x^{2} + 282 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.570213408102$, $\pm0.570213408102$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $50$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2601$ | $5267025$ | $10697351184$ | $23783909765625$ | $52611533192505681$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $2380$ | $103032$ | $4874068$ | $229399074$ | $10779316990$ | $506620274382$ | $23811290421988$ | $1119130595587944$ | $52599131691643900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=14 x^6+22 x^5+6 x^4+5 x^3+6 x^2+22 x+14$
- $y^2=34 x^6+21 x^5+6 x^4+41 x^3+15 x^2+40 x+24$
- $y^2=4 x^6+44 x^5+4 x^4+24 x^3+4 x^2+44 x+4$
- $y^2=24 x^6+26 x^5+21 x^4+8 x^3+5 x^2+30 x+41$
- $y^2=25 x^6+24 x^5+15 x^4+6 x^3+38 x^2+3 x+4$
- $y^2=43 x^6+21 x^5+35 x^4+7 x^3+35 x^2+27 x+3$
- $y^2=24 x^6+34 x^5+21 x^4+5 x^3+21 x^2+34 x+24$
- $y^2=19 x^6+3 x^5+22 x^4+18 x^3+42 x^2+6 x+39$
- $y^2=21 x^6+21 x^5+45 x^4+19 x^3+45 x^2+21 x+21$
- $y^2=16 x^6+36 x^5+31 x^4+21 x^3+31 x^2+36 x+16$
- $y^2=12 x^6+3 x^5+6 x^4+8 x^3+6 x^2+3 x+12$
- $y^2=4 x^6+37 x^5+11 x^4+40 x^3+32 x^2+7 x+22$
- $y^2=16 x^6+36 x^5+42 x^4+19 x^3+42 x^2+36 x+16$
- $y^2=24 x^6+13 x^5+32 x^4+35 x^3+21 x^2+44 x+4$
- $y^2=5 x^6+36 x^5+35 x^4+27 x^3+5 x^2+15 x+12$
- $y^2=36 x^6+18 x^5+26 x^4+18 x^3+26 x^2+18 x+36$
- $y^2=35 x^6+37 x^5+34 x^4+34 x^3+30 x^2+46 x+16$
- $y^2=46 x^6+14 x^5+38 x^4+38 x^3+15 x^2+35 x+42$
- $y^2=14 x^6+12 x^5+38 x^4+21 x^3+13 x^2+32 x+7$
- $y^2=42 x^6+31 x^5+4 x^3+39 x+3$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.d 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-179}) \)$)$ |
Base change
This is a primitive isogeny class.