Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 82 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.127720932076$, $\pm0.872279067924$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\zeta_{8})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $144$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3400$ | $11560000$ | $42180838600$ | $146836229760000$ | $511116754221685000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3318$ | $205380$ | $12117838$ | $714924300$ | $42181143558$ | $2488651484820$ | $146830485960478$ | $8662995818654940$ | $511116755142728598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=44 x^6+22 x^5+41 x^4+38 x^2+20 x+19$
- $y^2=32 x^6+4 x^5+48 x^4+57 x^3+37 x^2+50 x+7$
- $y^2=5 x^6+8 x^5+37 x^4+55 x^3+15 x^2+41 x+14$
- $y^2=37 x^6+20 x^5+30 x^4+46 x^3+17 x^2+10 x+27$
- $y^2=15 x^6+40 x^5+x^4+33 x^3+34 x^2+20 x+54$
- $y^2=51 x^6+42 x^5+55 x^4+42 x^3+33 x^2+19 x+22$
- $y^2=43 x^6+25 x^5+51 x^4+25 x^3+7 x^2+38 x+44$
- $y^2=39 x^6+20 x^5+25 x^4+4 x^3+5 x^2+13 x+1$
- $y^2=51 x^6+14 x^5+44 x^4+13 x^3+25 x^2+55 x+31$
- $y^2=43 x^6+28 x^5+29 x^4+26 x^3+50 x^2+51 x+3$
- $y^2=43 x^6+21 x^5+29 x^4+11 x^3+21 x^2+8 x+32$
- $y^2=27 x^6+42 x^5+58 x^4+22 x^3+42 x^2+16 x+5$
- $y^2=52 x^6+45 x^5+39 x^4+46 x^3+50 x+7$
- $y^2=57 x^6+15 x^5+52 x^4+18 x^3+58 x^2+58 x+37$
- $y^2=46 x^6+58 x^5+46 x^4+8 x^3+55 x^2+55 x+11$
- $y^2=33 x^6+57 x^5+33 x^4+16 x^3+51 x^2+51 x+22$
- $y^2=16 x^6+30 x^5+55 x^4+52 x^3+49 x^2+39 x+37$
- $y^2=32 x^6+x^5+51 x^4+45 x^3+39 x^2+19 x+15$
- $y^2=57 x^6+43 x^4+41 x^3+19 x^2+2 x+45$
- $y^2=11 x^6+27 x^5+54 x^4+30 x^3+32 x^2+10 x+7$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ade 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.