L(s) = 1 | − 3-s + 9-s − 6·19-s + 6·25-s − 27-s − 6·29-s + 18·41-s − 12·43-s − 10·49-s + 6·53-s + 6·57-s + 8·59-s − 8·61-s + 12·71-s + 8·73-s − 6·75-s + 81-s + 6·87-s − 18·89-s + 4·107-s + 18·113-s + 6·121-s − 18·123-s + 127-s + 12·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.37·19-s + 6/5·25-s − 0.192·27-s − 1.11·29-s + 2.81·41-s − 1.82·43-s − 1.42·49-s + 0.824·53-s + 0.794·57-s + 1.04·59-s − 1.02·61-s + 1.42·71-s + 0.936·73-s − 0.692·75-s + 1/9·81-s + 0.643·87-s − 1.90·89-s + 0.386·107-s + 1.69·113-s + 6/11·121-s − 1.62·123-s + 0.0887·127-s + 1.05·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.242050304\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.242050304\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.438751586425724428114617365913, −7.955497807542985706446486077888, −7.40915102014633772943899968298, −7.00354104003569786630422972244, −6.52012108211125726403801709815, −6.17460330461658071711152741904, −5.66166980839627965816048490433, −5.13197123038658603513682411362, −4.69005051342033743655650821167, −4.15265363684348228508107750838, −3.68616980551480595374854275616, −2.94662827515129674666916976417, −2.28134437748715567694121300002, −1.60849955023145439407104165383, −0.58907368597405324582529116960,
0.58907368597405324582529116960, 1.60849955023145439407104165383, 2.28134437748715567694121300002, 2.94662827515129674666916976417, 3.68616980551480595374854275616, 4.15265363684348228508107750838, 4.69005051342033743655650821167, 5.13197123038658603513682411362, 5.66166980839627965816048490433, 6.17460330461658071711152741904, 6.52012108211125726403801709815, 7.00354104003569786630422972244, 7.40915102014633772943899968298, 7.955497807542985706446486077888, 8.438751586425724428114617365913