Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 67 x^{2} )( 1 + 10 x + 67 x^{2} )$ |
| $1 + 34 x^{2} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.290828956352$, $\pm0.709171043648$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $356$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4524$ | $20466576$ | $90457963596$ | $406383023195136$ | $1822837807140709164$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4558$ | $300764$ | $20166766$ | $1350125108$ | $90457545022$ | $6060711605324$ | $406067635793758$ | $27206534396294948$ | $1822837809729656878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 356 curves (of which all are hyperelliptic):
- $y^2=55 x^6+39 x^5+64 x^4+52 x^3+51 x^2+15 x+63$
- $y^2=18 x^6+17 x^5+28 x^4+39 x^3+38 x+50$
- $y^2=36 x^6+34 x^5+56 x^4+11 x^3+9 x+33$
- $y^2=40 x^6+40 x^5+30 x^4+27 x^3+17 x^2+59 x+58$
- $y^2=39 x^6+26 x^5+49 x^4+48 x^3+14 x^2+42 x+33$
- $y^2=11 x^6+52 x^5+31 x^4+29 x^3+28 x^2+17 x+66$
- $y^2=x^5+8 x^4+7 x^3+60 x^2+13 x+32$
- $y^2=2 x^5+16 x^4+14 x^3+53 x^2+26 x+64$
- $y^2=3 x^6+43 x^5+16 x^4+59 x^3+3 x^2+18 x+9$
- $y^2=60 x^6+25 x^5+17 x^4+32 x^3+63 x^2+35 x+63$
- $y^2=57 x^6+47 x^5+24 x^4+30 x^3+48 x^2+37 x+60$
- $y^2=47 x^6+27 x^5+48 x^4+60 x^3+29 x^2+7 x+53$
- $y^2=35 x^6+36 x^5+9 x^4+56 x^3+18 x^2+58 x+33$
- $y^2=3 x^6+5 x^5+18 x^4+45 x^3+36 x^2+49 x+66$
- $y^2=10 x^6+3 x^5+61 x^4+14 x^3+48 x^2+58 x+39$
- $y^2=20 x^6+6 x^5+55 x^4+28 x^3+29 x^2+49 x+11$
- $y^2=23 x^6+18 x^5+6 x^4+19 x^3+62 x^2+46 x+54$
- $y^2=46 x^6+36 x^5+12 x^4+38 x^3+57 x^2+25 x+41$
- $y^2=17 x^6+39 x^5+21 x^4+14 x^3+52 x^2+22 x+10$
- $y^2=34 x^6+11 x^5+42 x^4+28 x^3+37 x^2+44 x+20$
- and 336 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.ak $\times$ 1.67.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.bi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.