Invariants
| Base field: | $\F_{41}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $( 1 - 10 x + 41 x^{2} )( 1 - 8 x + 41 x^{2} )$ | 
| $1 - 18 x + 162 x^{2} - 738 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.214776712523$, $\pm0.285223287477$ | 
| Angle rank: | $1$ (numerical) | 
| Jacobians: | $10$ | 
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1088$ | $2828800$ | $4798733888$ | $8002109440000$ | $13425660552953408$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $1682$ | $69624$ | $2831838$ | $115882104$ | $4750104242$ | $194753381784$ | $7984918073278$ | $327381906567384$ | $13422659310152402$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=18 x^6+39 x^5+13 x^4+5 x^3+3 x^2+21 x+10$
- $y^2=22 x^6+7 x^5+18 x^4+27 x^3+31 x^2+30 x+14$
- $y^2=19 x^6+27 x^5+13 x^4+25 x^3+28 x^2+27 x+22$
- $y^2=28 x^6+40 x^5+21 x^4+9 x^3+18 x^2+16 x+26$
- $y^2=26 x^6+3 x^5+22 x^4+25 x^3+17 x^2+30 x+22$
- $y^2=28 x^6+23 x^5+16 x^4+26 x^3+2 x^2+x+26$
- $y^2=27 x^6+11 x^5+24 x^4+31 x^3+19 x^2+38 x+17$
- $y^2=31 x^6+27 x^4+31 x^3+19 x^2+1$
- $y^2=17 x^6+11 x^4+32 x^3+24 x^2+30$
- $y^2=4 x^6+17 x^4+5 x^3+24 x^2+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{4}}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.ak $\times$ 1.41.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: | 
| The base change of $A$ to $\F_{41^{4}}$ is 1.2825761.emw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ | 
- Endomorphism algebra over $\F_{41^{2}}$
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.as $\times$ 1.1681.s. The endomorphism algebra for each factor is: 
Base change
This is a primitive isogeny class.
