Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x^{2} + 961 x^{4}$ |
Frobenius angles: | $\pm0.213749152945$, $\pm0.786250847055$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{19})\) |
Galois group: | $C_2^2$ |
Jacobians: | $50$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $948$ | $898704$ | $887541300$ | $856083861504$ | $819628234981428$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $934$ | $29792$ | $926974$ | $28629152$ | $887578918$ | $27512614112$ | $852888773374$ | $26439622160672$ | $819628182982054$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=6 x^6+20 x^5+13 x^2+6 x+24$
- $y^2=18 x^6+29 x^5+8 x^2+18 x+10$
- $y^2=x^6+24 x^3+29$
- $y^2=3 x^6+7 x^5+5 x^4+19 x^3+9 x^2+13 x+11$
- $y^2=9 x^6+21 x^5+15 x^4+26 x^3+27 x^2+8 x+2$
- $y^2=28 x^5+x^4+4 x^3+28 x^2+9 x+23$
- $y^2=22 x^5+3 x^4+12 x^3+22 x^2+27 x+7$
- $y^2=11 x^6+22 x^5+27 x^4+21 x^3+18 x^2+27 x+9$
- $y^2=x^6+x^3+27$
- $y^2=27 x^6+23 x^5+26 x^4+9 x^2+25$
- $y^2=19 x^6+7 x^5+16 x^4+27 x^2+13$
- $y^2=10 x^6+x^5+24 x^4+30 x^3+10 x^2+10 x+25$
- $y^2=22 x^6+18 x^5+8 x^3+2 x+10$
- $y^2=24 x^6+4 x^5+14 x^4+11 x^3+26 x^2+30 x+18$
- $y^2=10 x^6+12 x^5+11 x^4+2 x^3+16 x^2+28 x+23$
- $y^2=16 x^6+17 x^5+12 x^4+3 x^3+10 x^2+23 x+15$
- $y^2=10 x^6+9 x^5+23 x^3+7 x+11$
- $y^2=15 x^6+14 x^5+14 x^4+29 x^3+26 x^2+4 x+1$
- $y^2=18 x^6+24 x^5+4 x^4+15 x^3+10 x+23$
- $y^2=23 x^6+10 x^5+12 x^4+14 x^3+30 x+7$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{19})\). |
The base change of $A$ to $\F_{31^{2}}$ is 1.961.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
Base change
This is a primitive isogeny class.