Properties

Label 2.53.ag_co
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 10 x + 53 x^{2} )( 1 + 4 x + 53 x^{2} )$
  $1 - 6 x + 66 x^{2} - 318 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.259013587977$, $\pm0.588585532783$
Angle rank:  $2$ (numerical)
Jacobians:  $130$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2552$ $8166400$ $22167001208$ $62284152832000$ $174914568748732472$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $2906$ $148896$ $7893582$ $418260288$ $22164281354$ $1174707320016$ $62259684654238$ $3299763601992528$ $174887469816012986$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 130 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ak $\times$ 1.53.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ao_fq$2$(not in LMFDB)
2.53.g_co$2$(not in LMFDB)
2.53.o_fq$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ao_fq$2$(not in LMFDB)
2.53.g_co$2$(not in LMFDB)
2.53.o_fq$2$(not in LMFDB)
2.53.ay_jm$4$(not in LMFDB)
2.53.ae_abi$4$(not in LMFDB)
2.53.e_abi$4$(not in LMFDB)
2.53.y_jm$4$(not in LMFDB)