Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 53 x^{2} )( 1 + 4 x + 53 x^{2} )$ |
$1 - 6 x + 66 x^{2} - 318 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.259013587977$, $\pm0.588585532783$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $130$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2552$ | $8166400$ | $22167001208$ | $62284152832000$ | $174914568748732472$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2906$ | $148896$ | $7893582$ | $418260288$ | $22164281354$ | $1174707320016$ | $62259684654238$ | $3299763601992528$ | $174887469816012986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 130 curves (of which all are hyperelliptic):
- $y^2=8 x^6+34 x^5+50 x^4+13 x^3+24 x^2+14 x+27$
- $y^2=47 x^6+20 x^5+51 x^4+10 x^3+5 x^2+12 x+9$
- $y^2=36 x^6+24 x^5+40 x^4+31 x^3+10 x^2+34 x+47$
- $y^2=19 x^6+4 x^5+41 x^4+x^3+41 x^2+4 x+19$
- $y^2=14 x^6+20 x^5+34 x^4+35 x^3+25 x^2+31$
- $y^2=31 x^5+37 x^4+4 x^3+15 x^2+43 x+41$
- $y^2=45 x^6+18 x^5+26 x^4+32 x^3+43 x^2+38 x+10$
- $y^2=18 x^6+36 x^5+35 x^4+45 x^3+9 x^2+42 x+2$
- $y^2=24 x^6+16 x^5+37 x^4+2 x^3+5 x^2+21 x+23$
- $y^2=37 x^6+25 x^5+x^4+43 x^3+36 x^2+24 x+2$
- $y^2=9 x^6+24 x^5+32 x^4+36 x^3+37 x^2+48 x+49$
- $y^2=50 x^6+20 x^5+52 x^4+14 x^3+52 x^2+3 x+31$
- $y^2=31 x^6+34 x^5+23 x^4+2 x^3+x^2+41 x+48$
- $y^2=37 x^6+50 x^5+6 x^4+46 x^3+28 x^2+32 x+47$
- $y^2=40 x^6+42 x^5+43 x^4+7 x^3+22 x^2+42 x+11$
- $y^2=48 x^6+36 x^5+12 x^4+10 x^3+16 x^2+22 x+18$
- $y^2=4 x^6+x^5+25 x^4+26 x^3+25 x^2+14 x$
- $y^2=50 x^6+18 x^5+11 x^4+51 x^3+15 x^2+23 x+38$
- $y^2=15 x^6+46 x^5+15 x^4+2 x^3+9 x^2+5 x+41$
- $y^2=20 x^6+14 x^5+21 x^4+31 x^3+23 x^2+25 x+5$
- and 110 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ak $\times$ 1.53.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.