Properties

Label 2.89.s_gw
Base field $\F_{89}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 + 89 x^{2} )( 1 + 18 x + 89 x^{2} )$
  $1 + 18 x + 178 x^{2} + 1602 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.903075820349$
Angle rank:  $1$ (numerical)
Jacobians:  $384$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9720$ $62985600$ $497706000120$ $3935251604275200$ $31181760246875412600$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $108$ $7954$ $705996$ $62720926$ $5584066668$ $496983058162$ $44231327822412$ $3936588775737406$ $350356402617636204$ $31181719952250321874$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89^{2}}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.a $\times$ 1.89.s and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{89}$
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.afq $\times$ 1.7921.gw. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.as_gw$2$(not in LMFDB)