Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 89 x^{2} )( 1 + 18 x + 89 x^{2} )$ |
$1 + 18 x + 178 x^{2} + 1602 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.903075820349$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $384$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9720$ | $62985600$ | $497706000120$ | $3935251604275200$ | $31181760246875412600$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $108$ | $7954$ | $705996$ | $62720926$ | $5584066668$ | $496983058162$ | $44231327822412$ | $3936588775737406$ | $350356402617636204$ | $31181719952250321874$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):
- $y^2=85 x^6+34 x^5+6 x^4+86 x^3+36 x^2+67 x+59$
- $y^2=67 x^6+86 x^5+52 x^4+61 x^3+45 x^2+34 x+45$
- $y^2=53 x^6+15 x^5+12 x^3+14 x^2+64 x+36$
- $y^2=32 x^6+88 x^5+67 x^4+29 x^3+37 x^2+47 x+16$
- $y^2=78 x^6+76 x^5+71 x^4+43 x^3+81 x^2+5 x+47$
- $y^2=57 x^6+78 x^5+55 x^4+40 x^3+7 x^2+13 x+44$
- $y^2=9 x^6+49 x^5+41 x^4+77 x^3+61 x^2+6 x+32$
- $y^2=14 x^6+78 x^5+20 x^4+20 x^3+x^2+37 x+57$
- $y^2=22 x^6+81 x^5+76 x^4+7 x^3+65 x^2+16 x+49$
- $y^2=80 x^6+59 x^5+17 x^4+57 x^3+38 x^2+59 x+88$
- $y^2=68 x^6+87 x^5+60 x^4+65 x^3+63 x^2+82 x+45$
- $y^2=40 x^6+51 x^5+21 x^3+76 x^2+83 x+62$
- $y^2=3 x^6+17 x^5+75 x^4+10 x^3+44 x^2+80 x+23$
- $y^2=70 x^6+54 x^5+60 x^3+30 x+24$
- $y^2=38 x^6+30 x^5+69 x^4+45 x^3+69 x^2+30 x+38$
- $y^2=66 x^6+44 x^5+40 x^4+51 x^3+27 x^2+29 x+35$
- $y^2=47 x^6+68 x^5+33 x^4+86 x^3+66 x^2+16 x$
- $y^2=33 x^6+77 x^5+88 x^4+83 x^3+8 x^2+66 x+81$
- $y^2=74 x^6+47 x^5+31 x^3+35 x^2+14 x+19$
- $y^2=53 x^6+22 x^5+50 x^4+75 x^3+79 x^2+5 x+65$
- and 364 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.a $\times$ 1.89.s and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.afq $\times$ 1.7921.gw. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.as_gw | $2$ | (not in LMFDB) |